K-Teoria de operadores pseudodiferenciais com símbolos semi-periódicos no cilindro

Seja A a C*-álgebra dos operadores limitados em L^2(RxS^1) gerada por: operadores a(M) de multiplicação por funções a em C^{\\infty}(S^1), operadores b(M) de multiplicação por funções b em C([-\\infty, + \\infty]), operadores de multiplicação por funções contínuas 2\\pi-periódicas, \\Lambda = (1-\...

Full description

Bibliographic Details
Main Author: Hess, Patricia
Other Authors: Melo, Severino Toscano do Rego
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2008
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/45/45132/tde-02072009-045613/
Description
Summary:Seja A a C*-álgebra dos operadores limitados em L^2(RxS^1) gerada por: operadores a(M) de multiplicação por funções a em C^{\\infty}(S^1), operadores b(M) de multiplicação por funções b em C([-\\infty, + \\infty]), operadores de multiplicação por funções contínuas 2\\pi-periódicas, \\Lambda = (1-\\Delta_{RxS^1})^{-1/2}, onde \\Delta_{RxS^1} é o Laplaciano de RxS^1, e \\partial_t \\Lambda, \\partial_x \\Lambda para t em R e x em S^1. Calculamos a K-teoria de A e de A/K(L^2(RxS^1)), onde K(L^2(RxS^1)) é o ideal dos operadores compactos em L^2(RxS^1). === Let A denote the C*-algebra of bounded operators on L^2(RxS^1) generated by: all multiplications a(M) by functions a in C^{\\infty}(S^1), all multiplications b(M) by functions b in C([-\\infty, + \\infty]), all multiplications by 2\\pi-periodic continuous functions, \\Lambda = (1-\\Delta_{RxS^1)^{-1/2}, where \\Delta_{RxS^1} is the Laplacian on RxS^1, and \\partial_t \\Lambda, \\partial_x \\Lambda, for t in R and x in S^1. We compute the K-theory of A and A/K(L^2(RxS^1)), where K(L^2(RxS^1))$ is the ideal of compact operators on L^2(RxS^1).