Detecção de situações anormais em caldeiras de recuperação química.

O desafio para a área de monitoramento de processos, em indústrias químicas, ainda é a etapa de detecção, com a necessidade de desenvolvimento de sistemas confiáveis. Pode-se resumir que um sistema é confiável, ao ser capaz de detectar as situações anormais, de modo precoce, e, ao mesmo tempo, de mi...

Full description

Bibliographic Details
Main Author: Almeida, Gustavo Matheus de
Other Authors: Park, Song Won
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2006
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/3/3137/tde-01122006-155750/
id ndltd-usp.br-oai-teses.usp.br-tde-01122006-155750
record_format oai_dc
collection NDLTD
language pt
format Others
sources NDLTD
topic Análise de tendência de processo
Caldeiras de recuperação química
Chemical process monitoring
Chemical recovery boilers
Detecção de situações anormais
Detection of abnormal situations
Hidden Markov model
Kraft process
Modelo oculto de Markov
Monitoramento de processos químicos
Pattern recognition
Process trend analysis
Processo "Kraft"
Reconhecimento de padrões
spellingShingle Análise de tendência de processo
Caldeiras de recuperação química
Chemical process monitoring
Chemical recovery boilers
Detecção de situações anormais
Detection of abnormal situations
Hidden Markov model
Kraft process
Modelo oculto de Markov
Monitoramento de processos químicos
Pattern recognition
Process trend analysis
Processo "Kraft"
Reconhecimento de padrões
Almeida, Gustavo Matheus de
Detecção de situações anormais em caldeiras de recuperação química.
description O desafio para a área de monitoramento de processos, em indústrias químicas, ainda é a etapa de detecção, com a necessidade de desenvolvimento de sistemas confiáveis. Pode-se resumir que um sistema é confiável, ao ser capaz de detectar as situações anormais, de modo precoce, e, ao mesmo tempo, de minimizar a geração de alarmes falsos. Ao se ter um sistema confiável, pode-se empregá-lo para auxiliar o operador, de fábricas, no processo de tomada de decisões. O objetivo deste estudo é apresentar uma metodologia, baseada na técnica, modelo oculto de Markov (HMM, acrônimo de ?Hidden Markov Model?), para se detectar situações anormais em caldeiras de recuperação química. As aplicações de maior sucesso de HMM são na área de reconhecimento de fala. Pode-se citar como aspectos positivos: o raciocínio probabilístico, a modelagem explícita, e a identificação a partir de dados históricos. Fez-se duas aplicações. O primeiro estudo de caso é no ?benchmark? de um sistema de evaporação múltiplo efeito de uma fábrica de produção de açúcar. Identificou-se um HMM, característico de operação normal, para se detectar cinco situações anormais no atuador responsável por regular o fluxo de xarope de açúcar para o primeiro evaporador. A detecção, para as três situações abruptas, é imediata, uma vez que o HMM foi capaz de detectar alterações, abruptas, no sinal da variável monitorada. Em relação às duas situações incipientes, foi possível detectá-las ainda em estágio inicial; ao ser o valor de f (vetor responsável por representar a intensidade de um evento anormal, com o tempo), no instante da detecção, próximo a zero, igual a 2,8% e 2,1%, respectivamente. O segundo estudo de caso é em uma caldeira de recuperação química, de uma fábrica de produção de celulose, no Brasil. O objetivo é monitorar o acúmulo de depósitos de cinzas sobre os equipamentos da sessão de transferência de calor convectivo, através de medições de perda de carga. Este é um dos principais desafios para se aumentar a eficiência operacional deste equipamento. Após a identificação de um HMM característico de perda de carga alta, pôde-se verificar a sua capacidade de informar o estado atual e, por consequência, a tendência do sistema, de modo similar à um preditor. Pôde-se demonstrar também a utilidade de se definir limites de controle, com o objetivo de se ter a informação sobre a distância entre o estado atual e os níveis de alarme de perda de carga. === The greatest challenge faced by the area of process monitoring in chemical industries still resides in the fault detection task, which aims at developing reliable systems. One may say that a system is reliable if it is able to perform early fault detection and, at the same time, to reduce the generation of false alarms. Once there is a reliable system available, it can be employed to help operators, in factories, in the decisionmaking process. The aim of this study is presenting a methodology, based on the Hidden Markov Model (HMM) technique, suggesting its use in the detection of abnormal situations in chemical recovery boilers. The most successful applications of HMM are in the area of speech recognition. Some of its advantages are: probabilistic reasoning, explicit modeling and the identification based on process history data. This study discusses two applications. The first one is on a benchmark of a multiple evaporation system in a sugar factory. A HMM representative of the normal operation was identified, in order to detect five abnormal situations at the actuator responsible for controlling the syrup flow to the first evaporator. The detection result for the three abrupt situations was immediate, since the HMM was capable of detecting the statistical changes on the signal of the monitored variable as soon as they occurred. Regarding to the two incipient situations, the detection was done at an early stage. For both events, the value of vector f (responsible for representing the strength of an abnormal event over time), at the time it occurred, was near zero, equal to 2.8 and 2.1%, respectively. The second case study deals with the application of HMM in a chemical recovery boiler, belonging to a cellulose mill, in Brazil. The aim is monitoring the accumulation of ash deposits over the equipments of the convective heat transfer section, through pressure drop measures. This is one of the main challenges to be overcome nowadays, bearing in mind the interest that exists in increasing the operational efficiency of this equipment. Initially, a HMM for high values of pressure drop was identified. With this model, it was possible to check its capacity to inform the current state, and consequently, the tendency of the system (similarly as a predictor). It was also possible to show the utility of defining control limits, in order to inform the operator the relative distance between the current state of the system and the alarm levels of pressure drop.
author2 Park, Song Won
author_facet Park, Song Won
Almeida, Gustavo Matheus de
author Almeida, Gustavo Matheus de
author_sort Almeida, Gustavo Matheus de
title Detecção de situações anormais em caldeiras de recuperação química.
title_short Detecção de situações anormais em caldeiras de recuperação química.
title_full Detecção de situações anormais em caldeiras de recuperação química.
title_fullStr Detecção de situações anormais em caldeiras de recuperação química.
title_full_unstemmed Detecção de situações anormais em caldeiras de recuperação química.
title_sort detecção de situações anormais em caldeiras de recuperação química.
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2006
url http://www.teses.usp.br/teses/disponiveis/3/3137/tde-01122006-155750/
work_keys_str_mv AT almeidagustavomatheusde deteccaodesituacoesanormaisemcaldeirasderecuperacaoquimica
AT almeidagustavomatheusde detectionofabnormalsituationsinchemicalrecoveryboilers
_version_ 1719048637048160256
spelling ndltd-usp.br-oai-teses.usp.br-tde-01122006-1557502019-05-09T17:32:04Z Detecção de situações anormais em caldeiras de recuperação química. Detection of abnormal situations in chemical recovery boilers. Almeida, Gustavo Matheus de Análise de tendência de processo Caldeiras de recuperação química Chemical process monitoring Chemical recovery boilers Detecção de situações anormais Detection of abnormal situations Hidden Markov model Kraft process Modelo oculto de Markov Monitoramento de processos químicos Pattern recognition Process trend analysis Processo "Kraft" Reconhecimento de padrões O desafio para a área de monitoramento de processos, em indústrias químicas, ainda é a etapa de detecção, com a necessidade de desenvolvimento de sistemas confiáveis. Pode-se resumir que um sistema é confiável, ao ser capaz de detectar as situações anormais, de modo precoce, e, ao mesmo tempo, de minimizar a geração de alarmes falsos. Ao se ter um sistema confiável, pode-se empregá-lo para auxiliar o operador, de fábricas, no processo de tomada de decisões. O objetivo deste estudo é apresentar uma metodologia, baseada na técnica, modelo oculto de Markov (HMM, acrônimo de ?Hidden Markov Model?), para se detectar situações anormais em caldeiras de recuperação química. As aplicações de maior sucesso de HMM são na área de reconhecimento de fala. Pode-se citar como aspectos positivos: o raciocínio probabilístico, a modelagem explícita, e a identificação a partir de dados históricos. Fez-se duas aplicações. O primeiro estudo de caso é no ?benchmark? de um sistema de evaporação múltiplo efeito de uma fábrica de produção de açúcar. Identificou-se um HMM, característico de operação normal, para se detectar cinco situações anormais no atuador responsável por regular o fluxo de xarope de açúcar para o primeiro evaporador. A detecção, para as três situações abruptas, é imediata, uma vez que o HMM foi capaz de detectar alterações, abruptas, no sinal da variável monitorada. Em relação às duas situações incipientes, foi possível detectá-las ainda em estágio inicial; ao ser o valor de f (vetor responsável por representar a intensidade de um evento anormal, com o tempo), no instante da detecção, próximo a zero, igual a 2,8% e 2,1%, respectivamente. O segundo estudo de caso é em uma caldeira de recuperação química, de uma fábrica de produção de celulose, no Brasil. O objetivo é monitorar o acúmulo de depósitos de cinzas sobre os equipamentos da sessão de transferência de calor convectivo, através de medições de perda de carga. Este é um dos principais desafios para se aumentar a eficiência operacional deste equipamento. Após a identificação de um HMM característico de perda de carga alta, pôde-se verificar a sua capacidade de informar o estado atual e, por consequência, a tendência do sistema, de modo similar à um preditor. Pôde-se demonstrar também a utilidade de se definir limites de controle, com o objetivo de se ter a informação sobre a distância entre o estado atual e os níveis de alarme de perda de carga. The greatest challenge faced by the area of process monitoring in chemical industries still resides in the fault detection task, which aims at developing reliable systems. One may say that a system is reliable if it is able to perform early fault detection and, at the same time, to reduce the generation of false alarms. Once there is a reliable system available, it can be employed to help operators, in factories, in the decisionmaking process. The aim of this study is presenting a methodology, based on the Hidden Markov Model (HMM) technique, suggesting its use in the detection of abnormal situations in chemical recovery boilers. The most successful applications of HMM are in the area of speech recognition. Some of its advantages are: probabilistic reasoning, explicit modeling and the identification based on process history data. This study discusses two applications. The first one is on a benchmark of a multiple evaporation system in a sugar factory. A HMM representative of the normal operation was identified, in order to detect five abnormal situations at the actuator responsible for controlling the syrup flow to the first evaporator. The detection result for the three abrupt situations was immediate, since the HMM was capable of detecting the statistical changes on the signal of the monitored variable as soon as they occurred. Regarding to the two incipient situations, the detection was done at an early stage. For both events, the value of vector f (responsible for representing the strength of an abnormal event over time), at the time it occurred, was near zero, equal to 2.8 and 2.1%, respectively. The second case study deals with the application of HMM in a chemical recovery boiler, belonging to a cellulose mill, in Brazil. The aim is monitoring the accumulation of ash deposits over the equipments of the convective heat transfer section, through pressure drop measures. This is one of the main challenges to be overcome nowadays, bearing in mind the interest that exists in increasing the operational efficiency of this equipment. Initially, a HMM for high values of pressure drop was identified. With this model, it was possible to check its capacity to inform the current state, and consequently, the tendency of the system (similarly as a predictor). It was also possible to show the utility of defining control limits, in order to inform the operator the relative distance between the current state of the system and the alarm levels of pressure drop. Biblioteca Digitais de Teses e Dissertações da USP Park, Song Won 2006-09-12 Tese de Doutorado application/pdf http://www.teses.usp.br/teses/disponiveis/3/3137/tde-01122006-155750/ pt Liberar o conteúdo para acesso público.