Summary: | Résumé: L'importance de l'information géographique est indéniable pour des prises de décision efficaces dans le milieu urbain. Toutefois, sa disponibilité n'est pas toujours évidente. Les images satellitaires à très résolution spatiale (THRS) constituent une source intéressante pour l'acquisition de ces informations. Cependant, l'extraction de l'information géographique à partir de ces images reste encore problématique. Elle fait face, d'une part, aux spécificités du milieu urbain et celles des images à THRS et d'autre part, au manque de méthodes d'analyse d'images adéquates. Le but de la présente étude est de développer une nouvelle approche basée objets pour l'extraction automatique de l'information géographique en milieu urbain à partir des images à THRS. L'approche proposée repose sur une analyse d'image basée objets. Deux étapes principales sont identifiées : le passage des pixels aux primitives objets et le passage des primitives aux objets finaux. La première étape est assurée par une nouvelle approche de segmentation multispectrale non paramétrée. Elle se base sur la coopération entre les segmentations par régions et par contours. Elle utilise un critère d'homogénéité spectrale dont le seuil est déterminé d'une manière adaptive et automatique. Le deuxième passage part des primitives objets créées par segmentation. Elle utilise une base de règles floues qui traduisent la connaissance humaine utilisée pour l'interprétation des images. Elles se basent sur les propriétés des objets des classes étudiées. Des connaissances de divers types sont prises en considération (spectrales, texturales, géométriques, contextuelles). Les classes concernées sont : arbre, pelouse, sol nu et eau pour les classes naturelles et bâtiment, route, lot de stationnement pour les classes anthropiques. Des concepts de la théorie de la logique floue et celle des possibilités sont intégrés dans le processus d'extraction. Ils ont permis de gérer la complexité du sujet étudié, de raisonner avec des connaissances imprécises et d'informer sur la précision et la certitude des objets extraits. L'approche basée objets proposée a été appliquée sur des extraits d'images Ikonos et Quickbird. Un taux global de 80 % a été observé. Les taux de bonne extraction trouvés pour les classes bâtiment, route et lots de stationnement sont de l'ordre de 81 %, 75 % et 60 % respectivement. Les résultats atteints sont intéressants du moment que la même base des règles a été utilisée. L'aspect original réside dans le fait que son fonctionnement est totalement automatique et qu'elle ne nécessite ni données auxiliaires ni zones d'entraînement. Tout le long des différentes étapes de l'approche, les paramètres et les seuils nécessaires sont déterminés de manière automatique. L'approche peut être transposable sur d'autres sites d'étude. L'approche proposée dans le cadre de ce travail constitue une solution intéressante pour l'extraction automatique de l'information géographique à partir des images à THRS.||Abstract: The importance of the geographical information is incontestable for efficient decision making in urban environment. But, it is not always available.The very high spatial resolution (VHSR) satellite images constitute an interesting source of this information. However, the extraction of the geographical information from these images is until now problematic.The goal of the present study is to develop a new object-based approach for automatic extraction of geographical information in urban environment from very high spatial resolution images.The proposed approach is object-based image analysis. There are two principal steps: passage of pixels to object primitives and passage of primitives to final objects.The first stage uses a new multispectrale cooperative segmentation approach. Cooperation between region and edge information is exploited. Segments are created with respect to their spectral homogeneity.The threshold is adaptive and its determination is automatic.The second passage leaves from object primitives created by segmentation. Fuzzy rule base is generated from the human knowledge used for image interpretation. Several kinds of object proprieties are integrated (spectral, textural, geometric, and contextual).The concerned classes are trees, grass, bare soil and water as natural classes and building, road, parking lot as man made classes. Fuzzy logic and possibilities theories are integrated in the process of extraction. They permitted to manage the complexity of the studied objects, to reason with imprecise knowledge and to inform on precision and certainty of the extracted objects.The approach has been applied with success on various subsets of Ikonos and Quickbird images.The global extraction accuracy was about 80%.The object-based approach was able to extract buildings, roads and parking lots in urban areas with of 81%, 75% and 60% extraction accuracies respectively.The results are interesting with regard to that the same rule base was used.The original aspect resides in the fact that the approach is completely automatic and no auxiliary data or training areas are required. Along the different stages of the approach, the parameters and the thresholds are determined automatically. This allows the transposability of the approach on others VHRS images.The present approach constitutes an interesting solution for automatic extraction of the geographical information from VHSR satellite images.
|