Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems

Water is an essential resource from an environmental, biological, economic or social point of view. In basin management, the irregular distribution in time and in space of this resource is well known. This issue is worsened by extreme climate conditions, generating drought periods or flood events. F...

Full description

Bibliographic Details
Main Author: Lerma Elvira, Néstor
Other Authors: Andreu Álvarez, Joaquín
Format: Doctoral Thesis
Language:English
Published: Universitat Politècnica de València 2018
Subjects:
Online Access:http://hdl.handle.net/10251/90547
id ndltd-upv.es-oai-riunet.upv.es-10251-90547
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Evolutionary algorithms
simulation model: optimization
multi-objective
water management
SIMGES
RS MINERVE
decision makers
INGENIERIA HIDRAULICA
spellingShingle Evolutionary algorithms
simulation model: optimization
multi-objective
water management
SIMGES
RS MINERVE
decision makers
INGENIERIA HIDRAULICA
Lerma Elvira, Néstor
Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems
description Water is an essential resource from an environmental, biological, economic or social point of view. In basin management, the irregular distribution in time and in space of this resource is well known. This issue is worsened by extreme climate conditions, generating drought periods or flood events. For both situations, optimal management is necessary. In one case, different water uses should be supplied efficiently using the available surface and groundwater resources. In another case, the most important goal is to avoid damages in flood areas, including the loss of human lives, but also to optimize the revenue of energy production in hydropower plants, or in other uses. The approach presented in this thesis proposes to obtain optimal management rules in water resource systems. With this aim, evolutionary algorithms were combined with simulation models. The first ones, as optimization tools, are responsible for guiding the process iterations. In each iteration, a new management rule is defined in the simulation model, which is computed to comprehend the situation of the system after applying this new management. For testing the proposed methodology, four evolutionary algorithms were assessed combining them with two simulation models. The methodology was implemented in four real case studies. This thesis is presented as a compendium of five manuscripts: three scientific papers published in journals (which are indexed in the Journal Citation Report), another under review, and the last manuscript from Conference Proceedings. In the first manuscript, the Pikaia optimization algorithm was combined with the network flow SIMGES simulation model for obtaining four different types of optimal management rules in the Júcar River Basin. In addition, the parameters of the Pikaia algorithm were also analyzed to identify the best combination of them to use in the optimization process. In the second scientific paper, the multi-objective NSGA-II algorithm was assessed to obtain a parametric management rule in the Mijares River basin. In this case, the same simulation model was linked with the evolutionary algorithm. In the Conference manuscript, an in-depth analysis of the Tirso-Flumendosa-Campidano (TFM) system using different scenarios and comparing three water simulation models for water resources management was developed. The third published manuscript presented the assessment and comparison of two evolutionary algorithms for obtaining optimal rules in the TFM system using SIMGES model. The algorithms assessed were the SCE-UA and the Scatter Search. In this research paper, the parameters of both algorithms were also analyzed as it was done with the Pikaia algorithm. The management rules in the three first manuscripts were focused to avoid or minimize deficits in urban and agrarian demands and, in some case studies, also to minimize the water pumped. Finally, in the last document, two of the algorithms used in previous manuscripts were assessed, the mono-objective SCE-UA and the multi-objective NSGA-II. For this research, the algorithms were combined with RS MINERVE software to manage flood events in Visp River basin minimizing damages in risk areas and losses in hydropower plants. Results reached in the five manuscripts demonstrate the validity of the approach. In all the case studies and with the different evolutionary algorithms assessed, the obtained management rules achieved a better system management than the base scenario of each case. These results usually mean a decrease of the economic costs in the management of water resources. However, comparing the four algorithms assessed, SCE-UA algorithm proved to be the most efficient due to the different stop/convergence criteria and its formulation. Nevertheless, NSGA-II is the most recommended due to its multi-objective search focus on the enhancement of different objectives with the same importance where the decision makers can make the best decision for the management of the system. === El agua es un recurso esencial desde el punto de vista ambiental, biológico, económico o social. En la gestión de cuencas, es bien conocido que la distribución del recurso en el tiempo y el espacio es irregular. Este problema se agrava debido a condiciones climáticas extremas, generando períodos de sequía o inundaciones. Para ambas situaciones, una gestión óptima es necesaria. En un caso, el suministro de agua a los diferentes usos del sistema debe realizarte eficientemente empleando los recursos disponibles, tanto superficiales como subterráneos. En el otro caso, el objetivo más importante es evitar daños en las zonas de inundación, incluyendo la pérdida de vidas humanas, pero al mismo tiempo, optimizar los beneficios de centrales hidroeléctricas, o de otros usos. El enfoque presentado en esta tesis propone la obtención de reglas de gestión óptimas en sistemas reales de recursos hídricos. Con este objetivo, se combinaron algoritmos evolutivos con modelos de simulación. Los primeros, como herramientas de optimización, encargados de guiar las iteraciones del proceso. En cada iteración se define una nueva regla de gestión en el modelo de simulación, que se evalúa para conocer la situación del sistema después de aplicar esta nueva gestión. Para probar la metodología propuesta, se evaluaron cuatro algoritmos evolutivos combinándolos con dos modelos de simulación. La metodología se implementó en cuatro casos de estudio reales. Esta tesis se presenta como un compendio de cinco publicaciones: tres de ellas en revistas indexadas en el Journal Citation Report, otra en revisión y la última como publicación de un congreso. En el primer manuscrito, el algoritmo de optimización Pikaia se combinó con el modelo de simulación SIMGES para obtener reglas de gestión óptimas en la cuenca del río Júcar. Además, se analizaron los parámetros del algoritmo para identificar la mejor combinación de los mismos en el proceso de optimización. El segundo artículo evaluó el algoritmo multi-objetivo NSGA-II para obtener una regla de gestión paramétrica en la cuenca del río Mijares. En el trabajo presentado en el congreso se desarrolló un análisis en profundidad del sistema Tirso-Flumendosa-Campidano utilizando diferentes escenarios y comparando tres modelos de simulación para la gestión de los recursos hídricos. En el tercer manuscrito publicado se evaluó y comparó dos algoritmos evolutivos (SCE-UA y Scatter Search) para obtener reglas de gestión óptimas en el sistema Tirso-Flumendosa-Campidano. En dicha investigación también se analizaron los parámetros de ambos algoritmos. Las reglas de gestión de estas cuatro publicaciones se enfocaron en evitar o minimizar los déficits de las demandas urbanas y agrarias y, en ciertos casos, también en minimizar el caudal bombeado, utilizando para ello el modelo de simulación SIMGES. Finalmente, en la última publicación se evaluó el algoritmo mono-objetivo SCE-UA y el multi-objetivo NSGA-II. Para esta investigación, los algoritmos se combinaron con el software RS MINERVE para gestionar los eventos de inundación en la cuenca del río Visp minimizando los daños en las zonas de riesgo y las pérdidas en las centrales hidroeléctricas. Los resultados obtenidos en las cinco publicaciones demuestran la validez del enfoque. En todos los casos de estudio y, con los diferentes algoritmos evolutivos evaluados, las reglas de gestión obtenidas lograron una mejor gestión del sistema que el escenario base de cada caso. Estos resultados suelen representar una disminución de los costes económicos en la gestión de los recursos hídricos. Comparando los cuatro algoritmos, el SCE-UA demostró ser el más eficiente debido a los diferentes criterios de convergencia. No obstante, el NSGA-II es el más recomendado debido a su búsqueda multi-objetivo enfocada en la mejora, con la misma importancia, de diferentes objetivos, donde los tomadores de decisiones pueden sel === L'aigua és un recurs essencial des del punt de vista ambiental, biològic, econòmic o social. En la gestió de conques, és ben conegut que la distribució del recurs en el temps i l'espai és irregular. Este problema s'agreuja a causa de condicions climàtiques extremes, generant períodes de sequera o inundacions. Per a ambdúes situacions, una gestió òptima és necessària. En un cas, el subministrament d'aigua als diferents usos del sistema ha de realitzar-se eficientment utilitzant els recursos disponibles, tant superficials com subterranis. En l'altre cas, l'objectiu més important és evitar danys en les zones d'inundació, incloent la pèrdua de vides humanes, però al mateix temps, optimitzar els beneficis de centrals hidroelèctriques, o d'altres usos. La proposta d'esta tesi és l'obtenció de regles de gestió òptimes en sistemes reals de recursos hídrics. Amb este objectiu, es van combinar algoritmes evolutius amb models de simulació. Els primers, com a ferramentes d'optimització, encarregats de guiar les iteracions del procés. En cada iteració es definix una nova regla de gestió en el model de simulació, que s'avalua per a conéixer la situació del sistema després d'aplicar esta nova gestió. Per a provar la metodologia proposada, es van avaluar quatre algoritmes evolutius combinant-los amb dos models de simulació. La metodologia es va implementar en quatre casos d'estudi reals. Esta tesi es presenta com un compendi de cinc publicacions: tres d'elles en revistes indexades en el Journal Citation Report, una altra en revisió i l'última com a publicació d'un congrés. En el primer manuscrit, l'algoritme d'optimització Pikaia es va combinar amb el model de simulació SIMGES per a obtindre regles de gestió òptimes en la conca del riu Xúquer. A més, es van analitzar els paràmetres de l'algoritme per a identificar la millor combinació dels mateixos en el procés d'optimització. El segon article va avaluar l'algoritme multi-objectiu NSGA-II per a obtindre una regla de gestió paramètrica en la conca del riu Millars. En el treball presentat en el congrés es va desenvolupar una anàlisi en profunditat del sistema Tirso-Flumendosa-Campidano utilitzant diferents escenaris i comparant tres models de simulació per a la gestió dels recursos hídrics. En el tercer manuscrit publicat es va avaluar i va comparar dos algoritmes evolutius (SCE-UA i Scatter Search) per a obtindre regles de gestió òptimes en el sistema Tirso-Flumendosa-Campidano. En dita investigació també es van analitzar els paràmetres d'ambdós algoritmes. Les regles de gestió d'estes quatre publicacions es van enfocar a evitar o minimitzar els dèficits de les demandes urbanes i agràries i, en certs casos, també a minimitzar el cabal bombejat, utilitzant per a això el model de simulació SIMGES. Finalment, en l'última publicació es va avaluar l'algoritme mono-objectiu SCE-UA i el multi-objetiu NSGA-II. Per a esta investigació, els algoritmes es van combinar amb el programa RS MINERVE per a gestionar els esdeveniments d'inundació en la conca del riu Visp minimitzant els danys en les zones de risc i les pèrdues en les centrals hidroelèctriques. Els resultats obtinguts en les cinc publicacions demostren la validesa de la metodología. En tots els casos d'estudi i, amb els diferents algoritmes evolutius avaluats, les regles de gestió obtingudes van aconseguir una millor gestió del sistema que l'escenari base de cada cas. Estos resultats solen representar una disminució dels costos econòmics en la gestió dels recursos hídrics. Comparant els quatre algoritmes, el SCE-UA va demostrar ser el més eficient a causa dels diferents criteris de convergència. No obstant això, el NSGA-II és el més recomanat a causa de la seua cerca multi-objectiu enfocada en la millora, amb la mateixa importància, de diferents objectius, on els decisors poden seleccionar la millor opció per a la gestió del sistema. === Lerma Elvira, N. (2017). Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90547 === TESIS
author2 Andreu Álvarez, Joaquín
author_facet Andreu Álvarez, Joaquín
Lerma Elvira, Néstor
author Lerma Elvira, Néstor
author_sort Lerma Elvira, Néstor
title Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems
title_short Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems
title_full Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems
title_fullStr Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems
title_full_unstemmed Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems
title_sort assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems
publisher Universitat Politècnica de València
publishDate 2018
url http://hdl.handle.net/10251/90547
work_keys_str_mv AT lermaelviranestor assessmentandimplementationofevolutionaryalgorithmsforoptimalmanagementrulesdesigninwaterresourcessystems
_version_ 1719367926949085184
spelling ndltd-upv.es-oai-riunet.upv.es-10251-905472020-12-02T20:22:48Z Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems Lerma Elvira, Néstor Andreu Álvarez, Joaquín Paredes Arquiola, Javier Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient Evolutionary algorithms simulation model: optimization multi-objective water management SIMGES RS MINERVE decision makers INGENIERIA HIDRAULICA Water is an essential resource from an environmental, biological, economic or social point of view. In basin management, the irregular distribution in time and in space of this resource is well known. This issue is worsened by extreme climate conditions, generating drought periods or flood events. For both situations, optimal management is necessary. In one case, different water uses should be supplied efficiently using the available surface and groundwater resources. In another case, the most important goal is to avoid damages in flood areas, including the loss of human lives, but also to optimize the revenue of energy production in hydropower plants, or in other uses. The approach presented in this thesis proposes to obtain optimal management rules in water resource systems. With this aim, evolutionary algorithms were combined with simulation models. The first ones, as optimization tools, are responsible for guiding the process iterations. In each iteration, a new management rule is defined in the simulation model, which is computed to comprehend the situation of the system after applying this new management. For testing the proposed methodology, four evolutionary algorithms were assessed combining them with two simulation models. The methodology was implemented in four real case studies. This thesis is presented as a compendium of five manuscripts: three scientific papers published in journals (which are indexed in the Journal Citation Report), another under review, and the last manuscript from Conference Proceedings. In the first manuscript, the Pikaia optimization algorithm was combined with the network flow SIMGES simulation model for obtaining four different types of optimal management rules in the Júcar River Basin. In addition, the parameters of the Pikaia algorithm were also analyzed to identify the best combination of them to use in the optimization process. In the second scientific paper, the multi-objective NSGA-II algorithm was assessed to obtain a parametric management rule in the Mijares River basin. In this case, the same simulation model was linked with the evolutionary algorithm. In the Conference manuscript, an in-depth analysis of the Tirso-Flumendosa-Campidano (TFM) system using different scenarios and comparing three water simulation models for water resources management was developed. The third published manuscript presented the assessment and comparison of two evolutionary algorithms for obtaining optimal rules in the TFM system using SIMGES model. The algorithms assessed were the SCE-UA and the Scatter Search. In this research paper, the parameters of both algorithms were also analyzed as it was done with the Pikaia algorithm. The management rules in the three first manuscripts were focused to avoid or minimize deficits in urban and agrarian demands and, in some case studies, also to minimize the water pumped. Finally, in the last document, two of the algorithms used in previous manuscripts were assessed, the mono-objective SCE-UA and the multi-objective NSGA-II. For this research, the algorithms were combined with RS MINERVE software to manage flood events in Visp River basin minimizing damages in risk areas and losses in hydropower plants. Results reached in the five manuscripts demonstrate the validity of the approach. In all the case studies and with the different evolutionary algorithms assessed, the obtained management rules achieved a better system management than the base scenario of each case. These results usually mean a decrease of the economic costs in the management of water resources. However, comparing the four algorithms assessed, SCE-UA algorithm proved to be the most efficient due to the different stop/convergence criteria and its formulation. Nevertheless, NSGA-II is the most recommended due to its multi-objective search focus on the enhancement of different objectives with the same importance where the decision makers can make the best decision for the management of the system. El agua es un recurso esencial desde el punto de vista ambiental, biológico, económico o social. En la gestión de cuencas, es bien conocido que la distribución del recurso en el tiempo y el espacio es irregular. Este problema se agrava debido a condiciones climáticas extremas, generando períodos de sequía o inundaciones. Para ambas situaciones, una gestión óptima es necesaria. En un caso, el suministro de agua a los diferentes usos del sistema debe realizarte eficientemente empleando los recursos disponibles, tanto superficiales como subterráneos. En el otro caso, el objetivo más importante es evitar daños en las zonas de inundación, incluyendo la pérdida de vidas humanas, pero al mismo tiempo, optimizar los beneficios de centrales hidroeléctricas, o de otros usos. El enfoque presentado en esta tesis propone la obtención de reglas de gestión óptimas en sistemas reales de recursos hídricos. Con este objetivo, se combinaron algoritmos evolutivos con modelos de simulación. Los primeros, como herramientas de optimización, encargados de guiar las iteraciones del proceso. En cada iteración se define una nueva regla de gestión en el modelo de simulación, que se evalúa para conocer la situación del sistema después de aplicar esta nueva gestión. Para probar la metodología propuesta, se evaluaron cuatro algoritmos evolutivos combinándolos con dos modelos de simulación. La metodología se implementó en cuatro casos de estudio reales. Esta tesis se presenta como un compendio de cinco publicaciones: tres de ellas en revistas indexadas en el Journal Citation Report, otra en revisión y la última como publicación de un congreso. En el primer manuscrito, el algoritmo de optimización Pikaia se combinó con el modelo de simulación SIMGES para obtener reglas de gestión óptimas en la cuenca del río Júcar. Además, se analizaron los parámetros del algoritmo para identificar la mejor combinación de los mismos en el proceso de optimización. El segundo artículo evaluó el algoritmo multi-objetivo NSGA-II para obtener una regla de gestión paramétrica en la cuenca del río Mijares. En el trabajo presentado en el congreso se desarrolló un análisis en profundidad del sistema Tirso-Flumendosa-Campidano utilizando diferentes escenarios y comparando tres modelos de simulación para la gestión de los recursos hídricos. En el tercer manuscrito publicado se evaluó y comparó dos algoritmos evolutivos (SCE-UA y Scatter Search) para obtener reglas de gestión óptimas en el sistema Tirso-Flumendosa-Campidano. En dicha investigación también se analizaron los parámetros de ambos algoritmos. Las reglas de gestión de estas cuatro publicaciones se enfocaron en evitar o minimizar los déficits de las demandas urbanas y agrarias y, en ciertos casos, también en minimizar el caudal bombeado, utilizando para ello el modelo de simulación SIMGES. Finalmente, en la última publicación se evaluó el algoritmo mono-objetivo SCE-UA y el multi-objetivo NSGA-II. Para esta investigación, los algoritmos se combinaron con el software RS MINERVE para gestionar los eventos de inundación en la cuenca del río Visp minimizando los daños en las zonas de riesgo y las pérdidas en las centrales hidroeléctricas. Los resultados obtenidos en las cinco publicaciones demuestran la validez del enfoque. En todos los casos de estudio y, con los diferentes algoritmos evolutivos evaluados, las reglas de gestión obtenidas lograron una mejor gestión del sistema que el escenario base de cada caso. Estos resultados suelen representar una disminución de los costes económicos en la gestión de los recursos hídricos. Comparando los cuatro algoritmos, el SCE-UA demostró ser el más eficiente debido a los diferentes criterios de convergencia. No obstante, el NSGA-II es el más recomendado debido a su búsqueda multi-objetivo enfocada en la mejora, con la misma importancia, de diferentes objetivos, donde los tomadores de decisiones pueden sel L'aigua és un recurs essencial des del punt de vista ambiental, biològic, econòmic o social. En la gestió de conques, és ben conegut que la distribució del recurs en el temps i l'espai és irregular. Este problema s'agreuja a causa de condicions climàtiques extremes, generant períodes de sequera o inundacions. Per a ambdúes situacions, una gestió òptima és necessària. En un cas, el subministrament d'aigua als diferents usos del sistema ha de realitzar-se eficientment utilitzant els recursos disponibles, tant superficials com subterranis. En l'altre cas, l'objectiu més important és evitar danys en les zones d'inundació, incloent la pèrdua de vides humanes, però al mateix temps, optimitzar els beneficis de centrals hidroelèctriques, o d'altres usos. La proposta d'esta tesi és l'obtenció de regles de gestió òptimes en sistemes reals de recursos hídrics. Amb este objectiu, es van combinar algoritmes evolutius amb models de simulació. Els primers, com a ferramentes d'optimització, encarregats de guiar les iteracions del procés. En cada iteració es definix una nova regla de gestió en el model de simulació, que s'avalua per a conéixer la situació del sistema després d'aplicar esta nova gestió. Per a provar la metodologia proposada, es van avaluar quatre algoritmes evolutius combinant-los amb dos models de simulació. La metodologia es va implementar en quatre casos d'estudi reals. Esta tesi es presenta com un compendi de cinc publicacions: tres d'elles en revistes indexades en el Journal Citation Report, una altra en revisió i l'última com a publicació d'un congrés. En el primer manuscrit, l'algoritme d'optimització Pikaia es va combinar amb el model de simulació SIMGES per a obtindre regles de gestió òptimes en la conca del riu Xúquer. A més, es van analitzar els paràmetres de l'algoritme per a identificar la millor combinació dels mateixos en el procés d'optimització. El segon article va avaluar l'algoritme multi-objectiu NSGA-II per a obtindre una regla de gestió paramètrica en la conca del riu Millars. En el treball presentat en el congrés es va desenvolupar una anàlisi en profunditat del sistema Tirso-Flumendosa-Campidano utilitzant diferents escenaris i comparant tres models de simulació per a la gestió dels recursos hídrics. En el tercer manuscrit publicat es va avaluar i va comparar dos algoritmes evolutius (SCE-UA i Scatter Search) per a obtindre regles de gestió òptimes en el sistema Tirso-Flumendosa-Campidano. En dita investigació també es van analitzar els paràmetres d'ambdós algoritmes. Les regles de gestió d'estes quatre publicacions es van enfocar a evitar o minimitzar els dèficits de les demandes urbanes i agràries i, en certs casos, també a minimitzar el cabal bombejat, utilitzant per a això el model de simulació SIMGES. Finalment, en l'última publicació es va avaluar l'algoritme mono-objectiu SCE-UA i el multi-objetiu NSGA-II. Per a esta investigació, els algoritmes es van combinar amb el programa RS MINERVE per a gestionar els esdeveniments d'inundació en la conca del riu Visp minimitzant els danys en les zones de risc i les pèrdues en les centrals hidroelèctriques. Els resultats obtinguts en les cinc publicacions demostren la validesa de la metodología. En tots els casos d'estudi i, amb els diferents algoritmes evolutius avaluats, les regles de gestió obtingudes van aconseguir una millor gestió del sistema que l'escenari base de cada cas. Estos resultats solen representar una disminució dels costos econòmics en la gestió dels recursos hídrics. Comparant els quatre algoritmes, el SCE-UA va demostrar ser el més eficient a causa dels diferents criteris de convergència. No obstant això, el NSGA-II és el més recomanat a causa de la seua cerca multi-objectiu enfocada en la millora, amb la mateixa importància, de diferents objectius, on els decisors poden seleccionar la millor opció per a la gestió del sistema. Lerma Elvira, N. (2017). Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90547 TESIS 2018-09-25 info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion http://hdl.handle.net/10251/90547 10.4995/Thesis/10251/90547 eng http://rightsstatements.org/vocab/InC/1.0/ info:eu-repo/semantics/openAccess Universitat Politècnica de València