Development of a New 3D Reconstruction Algorithm for Computed Tomography (CT)
[EN] Model-based computed tomography (CT) image reconstruction is dominated by iterative algorithms. Although long reconstruction times remain as a barrier in practical applications, techniques to speed up its convergence are object of investigation, obtaining impressive results. In this thesis, a d...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Universitat Politècnica de València
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/10251/59421 |
id |
ndltd-upv.es-oai-riunet.upv.es-10251-59421 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Medical imaging Computed tomography CT image reconstruction CT modeling QR decomposition Model-based CT image reconstruction MATEMATICA APLICADA |
spellingShingle |
Medical imaging Computed tomography CT image reconstruction CT modeling QR decomposition Model-based CT image reconstruction MATEMATICA APLICADA Iborra Carreres, Amadeo Development of a New 3D Reconstruction Algorithm for Computed Tomography (CT) |
description |
[EN] Model-based computed tomography (CT) image reconstruction is dominated by iterative algorithms. Although long reconstruction times remain as a barrier in practical applications, techniques to speed up its convergence are object of investigation, obtaining impressive results. In this thesis, a direct algorithm is proposed for model-based image reconstruction. The model-based approximation relies on the construction of a model matrix that poses a linear system which solution is the reconstructed image. The proposed algorithm consists in the QR decomposition of this matrix and the resolution of the system by a backward substitution process. The cost of this image reconstruction technique is a matrix vector multiplication and a backward substitution process, since the model construction and the QR decomposition are performed only once, because of each image reconstruction corresponds to the resolution of the same CT system for a different right hand side.
Several problems regarding the implementation of this algorithm arise, such as the exact calculation of a volume intersection, definition of fill-in reduction strategies optimized for CT model matrices, or CT symmetry exploit to reduce the size of the system. These problems have been detailed and solutions to overcome them have been proposed, and as a result, a proof of concept implementation has been obtained.
Reconstructed images have been analyzed and compared against the filtered backprojection (FBP) and maximum likelihood expectation maximization (MLEM) reconstruction algorithms, and results show several benefits of the proposed algorithm. Although high resolutions could not have been achieved yet, obtained results also demonstrate the prospective of this algorithm, as great performance and scalability improvements would be achieved with the success in the development of better fill-in strategies or additional symmetries in CT geometry. === [ES] En la reconstrucción de imagen de tomografía axial computerizada (TAC), en su modalidad model-based, prevalecen los algoritmos iterativos. Aunque los altos tiempos de reconstrucción aún son una barrera para aplicaciones prácticas, diferentes técnicas para la aceleración de su convergencia están siendo objeto de investigación, obteniendo resultados impresionantes. En esta tesis, se propone un algoritmo directo para la reconstrucción de imagen model-based. La aproximación model-based se basa en la construcción de una matriz modelo que plantea un sistema lineal cuya solución es la imagen reconstruida. El algoritmo propuesto consiste en la descomposición QR de esta matriz y la resolución del sistema por un proceso de sustitución regresiva. El coste de esta técnica de reconstrucción de imagen es un producto matriz vector y una sustitución regresiva, ya que la construcción del modelo y la descomposición QR se realizan una sola vez, debido a que cada reconstrucción de imagen supone la resolución del mismo sistema TAC para un término independiente diferente.
Durante la implementación de este algoritmo aparecen varios problemas, tales como el cálculo exacto del volumen de intersección, la definición de estrategias de reducción del relleno optimizadas para matrices de modelo de TAC, o el aprovechamiento de simetrías del TAC que reduzcan el tama\~no del sistema. Estos problemas han sido detallados y se han propuesto soluciones para superarlos, y como resultado, se ha obtenido una implementación de prueba de concepto.
Las imágenes reconstruidas han sido analizadas y comparadas frente a los algoritmos de reconstrucción filtered backprojection (FBP) y maximum likelihood expectation maximization (MLEM), y los resultados muestran varias ventajas del algoritmo propuesto. Aunque no se han podido obtener resoluciones altas aún, los resultados obtenidos también demuestran el futuro de este algoritmo, ya que se podrían obtener mejoras importantes en el rendimiento y la escalabilidad con el éxito en el desarrollo de mejores estrategias de reducción de relleno o simetrías en la geometría TAC. === [CAT] En la reconstrucció de imatge tomografia axial computerizada (TAC) en la seua modalitat model-based prevaleixen els algorismes iteratius. Tot i que els alts temps de reconstrucció encara són un obstacle per a aplicacions pràctiques, diferents tècniques per a l'acceleració de la seua convergència estàn siguent objecte de investigació, obtenint resultats impressionants. En aquesta tesi, es proposa un algorisme direct per a la recconstrucció de image model-based. L'aproximació model-based es basa en la construcció d'una matriu model que planteja un sistema lineal quina sol·lució es la imatge reconstruida. L'algorisme propost consisteix en la descomposició QR d'aquesta matriu i la resolució del sistema per un procés de substitució regresiva. El cost d'aquesta tècnica de reconstrucció de imatge es un producte matriu vector i una substitució regresiva, ja que la construcció del model i la descomposició QR es realitzen una sola vegada, degut a que cada reconstrucció de imatge suposa la resolució del mateix sistema TAC per a un tèrme independent diferent.
Durant la implementació d'aquest algorisme sorgixen diferents problemes, tals com el càlcul exacte del volum de intersecció, la definició d'estratègies de reducció de farcit optimitzades per a matrius de model de TAC, o el aprofitament de simetries del TAC que redueixquen el tamany del sistema. Aquestos problemes han sigut detallats y s'han proposat solucions per a superar-los, i com a resultat, s'ha obtingut una implementació de prova de concepte.
Les imatges reconstruides han sigut analitzades i comparades front als algorismes de reconstrucció filtered backprojection (FBP) i maximum likelihood expectation maximization (MLEM), i els resultats mostren varies ventajes del algorisme propost. Encara que no s'han pogut obtindre resolucions altes ara per ara, els resultats obtinguts també demostren el futur d'aquest algorisme, ja que es prodrien obtindre millores importants en el rendiment i la escalabilitat amb l'éxit en el desemvolupament de millors estratègies de reducció de farcit o simetries en la geometria TAC. === Iborra Carreres, A. (2015). Development of a New 3D Reconstruction Algorithm for Computed Tomography (CT) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59421 === TESIS |
author2 |
Rodríguez Álvarez, María José |
author_facet |
Rodríguez Álvarez, María José Iborra Carreres, Amadeo |
author |
Iborra Carreres, Amadeo |
author_sort |
Iborra Carreres, Amadeo |
title |
Development of a New 3D Reconstruction Algorithm for Computed Tomography (CT) |
title_short |
Development of a New 3D Reconstruction Algorithm for Computed Tomography (CT) |
title_full |
Development of a New 3D Reconstruction Algorithm for Computed Tomography (CT) |
title_fullStr |
Development of a New 3D Reconstruction Algorithm for Computed Tomography (CT) |
title_full_unstemmed |
Development of a New 3D Reconstruction Algorithm for Computed Tomography (CT) |
title_sort |
development of a new 3d reconstruction algorithm for computed tomography (ct) |
publisher |
Universitat Politècnica de València |
publishDate |
2016 |
url |
http://hdl.handle.net/10251/59421 |
work_keys_str_mv |
AT iborracarreresamadeo developmentofanew3dreconstructionalgorithmforcomputedtomographyct |
_version_ |
1719367545041977344 |
spelling |
ndltd-upv.es-oai-riunet.upv.es-10251-594212020-12-02T20:22:13Z Development of a New 3D Reconstruction Algorithm for Computed Tomography (CT) Iborra Carreres, Amadeo Rodríguez Álvarez, María José Soriano Asensi, Antonio Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada Medical imaging Computed tomography CT image reconstruction CT modeling QR decomposition Model-based CT image reconstruction MATEMATICA APLICADA [EN] Model-based computed tomography (CT) image reconstruction is dominated by iterative algorithms. Although long reconstruction times remain as a barrier in practical applications, techniques to speed up its convergence are object of investigation, obtaining impressive results. In this thesis, a direct algorithm is proposed for model-based image reconstruction. The model-based approximation relies on the construction of a model matrix that poses a linear system which solution is the reconstructed image. The proposed algorithm consists in the QR decomposition of this matrix and the resolution of the system by a backward substitution process. The cost of this image reconstruction technique is a matrix vector multiplication and a backward substitution process, since the model construction and the QR decomposition are performed only once, because of each image reconstruction corresponds to the resolution of the same CT system for a different right hand side. Several problems regarding the implementation of this algorithm arise, such as the exact calculation of a volume intersection, definition of fill-in reduction strategies optimized for CT model matrices, or CT symmetry exploit to reduce the size of the system. These problems have been detailed and solutions to overcome them have been proposed, and as a result, a proof of concept implementation has been obtained. Reconstructed images have been analyzed and compared against the filtered backprojection (FBP) and maximum likelihood expectation maximization (MLEM) reconstruction algorithms, and results show several benefits of the proposed algorithm. Although high resolutions could not have been achieved yet, obtained results also demonstrate the prospective of this algorithm, as great performance and scalability improvements would be achieved with the success in the development of better fill-in strategies or additional symmetries in CT geometry. [ES] En la reconstrucción de imagen de tomografía axial computerizada (TAC), en su modalidad model-based, prevalecen los algoritmos iterativos. Aunque los altos tiempos de reconstrucción aún son una barrera para aplicaciones prácticas, diferentes técnicas para la aceleración de su convergencia están siendo objeto de investigación, obteniendo resultados impresionantes. En esta tesis, se propone un algoritmo directo para la reconstrucción de imagen model-based. La aproximación model-based se basa en la construcción de una matriz modelo que plantea un sistema lineal cuya solución es la imagen reconstruida. El algoritmo propuesto consiste en la descomposición QR de esta matriz y la resolución del sistema por un proceso de sustitución regresiva. El coste de esta técnica de reconstrucción de imagen es un producto matriz vector y una sustitución regresiva, ya que la construcción del modelo y la descomposición QR se realizan una sola vez, debido a que cada reconstrucción de imagen supone la resolución del mismo sistema TAC para un término independiente diferente. Durante la implementación de este algoritmo aparecen varios problemas, tales como el cálculo exacto del volumen de intersección, la definición de estrategias de reducción del relleno optimizadas para matrices de modelo de TAC, o el aprovechamiento de simetrías del TAC que reduzcan el tama\~no del sistema. Estos problemas han sido detallados y se han propuesto soluciones para superarlos, y como resultado, se ha obtenido una implementación de prueba de concepto. Las imágenes reconstruidas han sido analizadas y comparadas frente a los algoritmos de reconstrucción filtered backprojection (FBP) y maximum likelihood expectation maximization (MLEM), y los resultados muestran varias ventajas del algoritmo propuesto. Aunque no se han podido obtener resoluciones altas aún, los resultados obtenidos también demuestran el futuro de este algoritmo, ya que se podrían obtener mejoras importantes en el rendimiento y la escalabilidad con el éxito en el desarrollo de mejores estrategias de reducción de relleno o simetrías en la geometría TAC. [CAT] En la reconstrucció de imatge tomografia axial computerizada (TAC) en la seua modalitat model-based prevaleixen els algorismes iteratius. Tot i que els alts temps de reconstrucció encara són un obstacle per a aplicacions pràctiques, diferents tècniques per a l'acceleració de la seua convergència estàn siguent objecte de investigació, obtenint resultats impressionants. En aquesta tesi, es proposa un algorisme direct per a la recconstrucció de image model-based. L'aproximació model-based es basa en la construcció d'una matriu model que planteja un sistema lineal quina sol·lució es la imatge reconstruida. L'algorisme propost consisteix en la descomposició QR d'aquesta matriu i la resolució del sistema per un procés de substitució regresiva. El cost d'aquesta tècnica de reconstrucció de imatge es un producte matriu vector i una substitució regresiva, ja que la construcció del model i la descomposició QR es realitzen una sola vegada, degut a que cada reconstrucció de imatge suposa la resolució del mateix sistema TAC per a un tèrme independent diferent. Durant la implementació d'aquest algorisme sorgixen diferents problemes, tals com el càlcul exacte del volum de intersecció, la definició d'estratègies de reducció de farcit optimitzades per a matrius de model de TAC, o el aprofitament de simetries del TAC que redueixquen el tamany del sistema. Aquestos problemes han sigut detallats y s'han proposat solucions per a superar-los, i com a resultat, s'ha obtingut una implementació de prova de concepte. Les imatges reconstruides han sigut analitzades i comparades front als algorismes de reconstrucció filtered backprojection (FBP) i maximum likelihood expectation maximization (MLEM), i els resultats mostren varies ventajes del algorisme propost. Encara que no s'han pogut obtindre resolucions altes ara per ara, els resultats obtinguts també demostren el futur d'aquest algorisme, ja que es prodrien obtindre millores importants en el rendiment i la escalabilitat amb l'éxit en el desemvolupament de millors estratègies de reducció de farcit o simetries en la geometria TAC. Iborra Carreres, A. (2015). Development of a New 3D Reconstruction Algorithm for Computed Tomography (CT) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59421 TESIS 2016-01-07 info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion http://hdl.handle.net/10251/59421 10.4995/Thesis/10251/59421 eng http://rightsstatements.org/vocab/InC/1.0/ info:eu-repo/semantics/openAccess Universitat Politècnica de València |