Desarrollo de biosensores nanofotónicos de alta sensibilidad para la detección de biomarcadores microRNA en aplicaciones de diagnóstico médico
[ES] El interés en desarrollar biosensores de alta sensibilidad para identificar y cuantificar una amplia gama de moléculas ha aumentado notablemente durante las últimas décadas en numerosos campos de aplicación. Entre ellos probablemente el más demandado sea el diagnóstico médico, el cual ha sido i...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | Spanish |
Published: |
Universitat Politècnica de València
2021
|
Subjects: | |
Online Access: | http://hdl.handle.net/10251/172631 |
id |
ndltd-upv.es-oai-riunet.upv.es-10251-172631 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Spanish |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Photonic biosensor Photonics Medical diagnosis Silicon Oligonucleotide Biosensor Fotónica Molecular beacon Band gap MicroRNA Detección Diagnóstico médico Silicio Oligonucleótido TEORIA DE LA SEÑAL Y COMUNICACIONES |
spellingShingle |
Photonic biosensor Photonics Medical diagnosis Silicon Oligonucleotide Biosensor Fotónica Molecular beacon Band gap MicroRNA Detección Diagnóstico médico Silicio Oligonucleótido TEORIA DE LA SEÑAL Y COMUNICACIONES Ruiz Tórtola, Ángela Desarrollo de biosensores nanofotónicos de alta sensibilidad para la detección de biomarcadores microRNA en aplicaciones de diagnóstico médico |
description |
[ES] El interés en desarrollar biosensores de alta sensibilidad para identificar y cuantificar una amplia gama de moléculas ha aumentado notablemente durante las últimas décadas en numerosos campos de aplicación. Entre ellos probablemente el más demandado sea el diagnóstico médico, el cual ha sido impulsado por el descubrimiento de nuevos biomarcadores de enfermedades, tales como los miRNAs. No obstante, la mayoría de las técnicas existentes para realizar la detección requieren el uso de marcadores debido a la falta de sensibilidad para detectar analitos en bajas concentraciones. Las estructuras ópticas basadas en campo evanescente, donde la luz es usada para transformar interacciones bioquímicas en variaciones de las señales ópticas, constituyen una interesante alternativa para el desarrollo de este tipo de biosensores sin la necesidad de utilizar marcadores (label-free). Concretamente las estructuras fotónicas integradas en tecnología Silicon On Insulator exhiben alta sensibilidad, bajo límite de detección y alto nivel de multiplexación en aplicaciones de detección, especialmente cuando se utilizan materiales y procesos basados en silicio y compatibles con CMOS.
En esta Tesis Doctoral se muestra el desarrollo de un biosensor fotónico integrado label-free para la detección de oligonucleótidos, y más concretamente biomarcadores de cáncer miRNAs. Este biosensor está basado en la combinación de estructuras de band gap fotónico y la inmovilización de sondas de tipo molecular beacon sobre su superficie. La combinación de sendos elementos de transducción y bioreconomiento ha proporcionado una elevada sensibilidad en la detección de oligonucleótidos manteniendo un footprint por debajo de 100 µm2. El uso de este biosensor fotónico ha permitido también estudiar experimentalmente una novedosa técnica de amplificación de detección. Esta técnica explota el cambio conformacional sufrido por la sonda molecular beacon tras la hibridación con su oligonucleótido complementario, permitiendo alejar una partícula/molécula de la superficie del sensor, lo cual podría ser utilizado para amplificar la respuesta de detección del sensor.
Finalmente se propone una estrategia de regeneración en línea de los biosensores nanofotónicos desarrollados mediante una estrategia química basada en el uso de formamida. Esta estrategia no solo permite ahorrar tiempo sino que también reduce la variación entre las medidas obtenidas en experimentos diferentes, siendo especialmente útil cuando se testean niveles similares de analito. === [CA] L'interés en desenvolupar biosensors d'alta sensibilitat per a identificar i quantificar una àmplia gamma de molècules ha augmentat notablement durant les últimes dècades en nombrosos camps d'aplicació. Entre ells probablement el més demandat siga el diagnòstic mèdic, el qual ha sigut impulsat pel descobriment de nous biomarcadors de malalties, com ara els miRNAs. No obstant això, la majoria de les tècniques existents per a realitzar la detecció requereixen l'ús de marcadors a causa de la falta de sensibilitat per a detectar anàlits en baixes concentracions. Les estructures òptiques basades en camp evanescent, on la llum és usada per a transformar interaccions bioquímiques en variacions dels senyals òptics, constitueixen una interessant alternativa per al desenvolupament d'aquesta tipus de biosensors sense la necessitat d'utilitzar marcadors (label-free). Concretament les estructures fotòniques integrades en tecnologia Silicon On Insulator exhibeixen alta sensibilitat, baix límit de detecció i alt nivell de multiplexació en aplicacions de detecció, especialment quan s'utilitzen materials i processos basats en silici i compatibles amb CMOS.
En aquesta Tesi Doctoral es mostra el desenvolupament d'un biosensor fotònic integrat label-free per a la detecció d'oligonucleòtids, i més concretament biomarcadors de càncer miRNAs. Aquest biosensor està basat en la combinació d'estructures de band gap fotònic i la immobilització de sondes de tipus molecular beacon sobre la seua superfície. La combinació d'ambdós elements de transducció i bioreconeixement ha proporcionat una elevada sensibilitat en la detecció d'oligonucleòtids mantenint un footprint per davall de 100 µm². L'ús d'aquest biosensor fotònic ha permés també estudiar experimentalment una nova tècnica d'amplificació de detecció. Aquesta tècnica explota el canvi conformacional patit per la sonda molecular beacon després de la hibridació amb el seu oligonucleòtid complementari, permetent allunyar una partícula/molècula de la superfície del sensor, la qual cosa podria ser utilitzada per amplificar la resposta de detecció del sensor.
Finalment es proposa una estratègia de regeneració en línia dels biosensors nanofotònics desenvolupats mitjançant una estratègia química basada en l'ús de formamida. Aquesta estratègia no sols permet estalviar temps sinó que també redueix la variació entre les mesures obtingudes en experiments diferents, sent especialment útil quan es testen nivells similars d'anàlit. === [EN] The interest in developing highly sensitive biosensors to identify and quantify a wide range of molecules has remarkably been increasing during the last decades in numerous application fields. Among them, medical diagnosis is probably the most demanded, which has been driven by the discovery of new biomarkers of diseases, such as miRNAs. However, most of the existing techniques to perform the detection require the use of labels due to the lack of sensitivity to detect analytes at low concentrations. Evanescent-wave optical structures, where light is used to transduce biochemical interactions into variations of the optical signals, are an interesting alternative for the development of this type of biosensors allowing a label-free detection. Specifically, the planar integrated photonic structures based on Silicon On Insulator technology exhibit an extremely high sensitivity, a low detection limit and a high level of multiplexing in detection applications, especially when using materials and processes based on silicon and being CMOS compatible.
This PhD Thesis is focused on the development of label-free integrated photonic biosensors for the detection of oligonucleotides, and more specifically miRNA cancer biomarkers. This biosensor is based on the combination of photonic band gap structures and the immobilization of molecular beacon probes on its surface. The combination of both transduction and biorecognition elements has provided a very high sensitivity towards the detection of target oligonucleotides while keeping a sensor footprint below 100 µm2. The use of this photonic biosensor also allowed the experimental study of a novel detection amplification technique. This technique exploits the conformational change suffered by the molecular beacon probe after hybridization with its complementary oligonucleotide, allowing the displacement of a particle/molecule away from the sensor surface, what might be used for amplifying the sensor's detection response.
Finally, an online regeneration strategy for nanophotonic biosensors developed through a chemical strategy based on the use of formamide is proposed. This strategy not only saves time but also reduces the variation between measurements obtained in different experiments, being especially useful when testing similar levels of analyte. === Ruiz Tórtola, Á. (2021). Desarrollo de biosensores nanofotónicos de alta sensibilidad para la detección de biomarcadores microRNA en aplicaciones de diagnóstico médico [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172631 === TESIS |
author2 |
García Rupérez, Jaime |
author_facet |
García Rupérez, Jaime Ruiz Tórtola, Ángela |
author |
Ruiz Tórtola, Ángela |
author_sort |
Ruiz Tórtola, Ángela |
title |
Desarrollo de biosensores nanofotónicos de alta sensibilidad para la detección de biomarcadores microRNA en aplicaciones de diagnóstico médico |
title_short |
Desarrollo de biosensores nanofotónicos de alta sensibilidad para la detección de biomarcadores microRNA en aplicaciones de diagnóstico médico |
title_full |
Desarrollo de biosensores nanofotónicos de alta sensibilidad para la detección de biomarcadores microRNA en aplicaciones de diagnóstico médico |
title_fullStr |
Desarrollo de biosensores nanofotónicos de alta sensibilidad para la detección de biomarcadores microRNA en aplicaciones de diagnóstico médico |
title_full_unstemmed |
Desarrollo de biosensores nanofotónicos de alta sensibilidad para la detección de biomarcadores microRNA en aplicaciones de diagnóstico médico |
title_sort |
desarrollo de biosensores nanofotónicos de alta sensibilidad para la detección de biomarcadores microrna en aplicaciones de diagnóstico médico |
publisher |
Universitat Politècnica de València |
publishDate |
2021 |
url |
http://hdl.handle.net/10251/172631 |
work_keys_str_mv |
AT ruiztortolaangela desarrollodebiosensoresnanofotonicosdealtasensibilidadparaladetecciondebiomarcadoresmicrornaenaplicacionesdediagnosticomedico |
_version_ |
1719485247533350912 |
spelling |
ndltd-upv.es-oai-riunet.upv.es-10251-1726312021-09-27T17:25:50Z Desarrollo de biosensores nanofotónicos de alta sensibilidad para la detección de biomarcadores microRNA en aplicaciones de diagnóstico médico Ruiz Tórtola, Ángela García Rupérez, Jaime Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions Photonic biosensor Photonics Medical diagnosis Silicon Oligonucleotide Biosensor Fotónica Molecular beacon Band gap MicroRNA Detección Diagnóstico médico Silicio Oligonucleótido TEORIA DE LA SEÑAL Y COMUNICACIONES [ES] El interés en desarrollar biosensores de alta sensibilidad para identificar y cuantificar una amplia gama de moléculas ha aumentado notablemente durante las últimas décadas en numerosos campos de aplicación. Entre ellos probablemente el más demandado sea el diagnóstico médico, el cual ha sido impulsado por el descubrimiento de nuevos biomarcadores de enfermedades, tales como los miRNAs. No obstante, la mayoría de las técnicas existentes para realizar la detección requieren el uso de marcadores debido a la falta de sensibilidad para detectar analitos en bajas concentraciones. Las estructuras ópticas basadas en campo evanescente, donde la luz es usada para transformar interacciones bioquímicas en variaciones de las señales ópticas, constituyen una interesante alternativa para el desarrollo de este tipo de biosensores sin la necesidad de utilizar marcadores (label-free). Concretamente las estructuras fotónicas integradas en tecnología Silicon On Insulator exhiben alta sensibilidad, bajo límite de detección y alto nivel de multiplexación en aplicaciones de detección, especialmente cuando se utilizan materiales y procesos basados en silicio y compatibles con CMOS. En esta Tesis Doctoral se muestra el desarrollo de un biosensor fotónico integrado label-free para la detección de oligonucleótidos, y más concretamente biomarcadores de cáncer miRNAs. Este biosensor está basado en la combinación de estructuras de band gap fotónico y la inmovilización de sondas de tipo molecular beacon sobre su superficie. La combinación de sendos elementos de transducción y bioreconomiento ha proporcionado una elevada sensibilidad en la detección de oligonucleótidos manteniendo un footprint por debajo de 100 µm2. El uso de este biosensor fotónico ha permitido también estudiar experimentalmente una novedosa técnica de amplificación de detección. Esta técnica explota el cambio conformacional sufrido por la sonda molecular beacon tras la hibridación con su oligonucleótido complementario, permitiendo alejar una partícula/molécula de la superficie del sensor, lo cual podría ser utilizado para amplificar la respuesta de detección del sensor. Finalmente se propone una estrategia de regeneración en línea de los biosensores nanofotónicos desarrollados mediante una estrategia química basada en el uso de formamida. Esta estrategia no solo permite ahorrar tiempo sino que también reduce la variación entre las medidas obtenidas en experimentos diferentes, siendo especialmente útil cuando se testean niveles similares de analito. [CA] L'interés en desenvolupar biosensors d'alta sensibilitat per a identificar i quantificar una àmplia gamma de molècules ha augmentat notablement durant les últimes dècades en nombrosos camps d'aplicació. Entre ells probablement el més demandat siga el diagnòstic mèdic, el qual ha sigut impulsat pel descobriment de nous biomarcadors de malalties, com ara els miRNAs. No obstant això, la majoria de les tècniques existents per a realitzar la detecció requereixen l'ús de marcadors a causa de la falta de sensibilitat per a detectar anàlits en baixes concentracions. Les estructures òptiques basades en camp evanescent, on la llum és usada per a transformar interaccions bioquímiques en variacions dels senyals òptics, constitueixen una interessant alternativa per al desenvolupament d'aquesta tipus de biosensors sense la necessitat d'utilitzar marcadors (label-free). Concretament les estructures fotòniques integrades en tecnologia Silicon On Insulator exhibeixen alta sensibilitat, baix límit de detecció i alt nivell de multiplexació en aplicacions de detecció, especialment quan s'utilitzen materials i processos basats en silici i compatibles amb CMOS. En aquesta Tesi Doctoral es mostra el desenvolupament d'un biosensor fotònic integrat label-free per a la detecció d'oligonucleòtids, i més concretament biomarcadors de càncer miRNAs. Aquest biosensor està basat en la combinació d'estructures de band gap fotònic i la immobilització de sondes de tipus molecular beacon sobre la seua superfície. La combinació d'ambdós elements de transducció i bioreconeixement ha proporcionat una elevada sensibilitat en la detecció d'oligonucleòtids mantenint un footprint per davall de 100 µm². L'ús d'aquest biosensor fotònic ha permés també estudiar experimentalment una nova tècnica d'amplificació de detecció. Aquesta tècnica explota el canvi conformacional patit per la sonda molecular beacon després de la hibridació amb el seu oligonucleòtid complementari, permetent allunyar una partícula/molècula de la superfície del sensor, la qual cosa podria ser utilitzada per amplificar la resposta de detecció del sensor. Finalment es proposa una estratègia de regeneració en línia dels biosensors nanofotònics desenvolupats mitjançant una estratègia química basada en l'ús de formamida. Aquesta estratègia no sols permet estalviar temps sinó que també redueix la variació entre les mesures obtingudes en experiments diferents, sent especialment útil quan es testen nivells similars d'anàlit. [EN] The interest in developing highly sensitive biosensors to identify and quantify a wide range of molecules has remarkably been increasing during the last decades in numerous application fields. Among them, medical diagnosis is probably the most demanded, which has been driven by the discovery of new biomarkers of diseases, such as miRNAs. However, most of the existing techniques to perform the detection require the use of labels due to the lack of sensitivity to detect analytes at low concentrations. Evanescent-wave optical structures, where light is used to transduce biochemical interactions into variations of the optical signals, are an interesting alternative for the development of this type of biosensors allowing a label-free detection. Specifically, the planar integrated photonic structures based on Silicon On Insulator technology exhibit an extremely high sensitivity, a low detection limit and a high level of multiplexing in detection applications, especially when using materials and processes based on silicon and being CMOS compatible. This PhD Thesis is focused on the development of label-free integrated photonic biosensors for the detection of oligonucleotides, and more specifically miRNA cancer biomarkers. This biosensor is based on the combination of photonic band gap structures and the immobilization of molecular beacon probes on its surface. The combination of both transduction and biorecognition elements has provided a very high sensitivity towards the detection of target oligonucleotides while keeping a sensor footprint below 100 µm2. The use of this photonic biosensor also allowed the experimental study of a novel detection amplification technique. This technique exploits the conformational change suffered by the molecular beacon probe after hybridization with its complementary oligonucleotide, allowing the displacement of a particle/molecule away from the sensor surface, what might be used for amplifying the sensor's detection response. Finally, an online regeneration strategy for nanophotonic biosensors developed through a chemical strategy based on the use of formamide is proposed. This strategy not only saves time but also reduces the variation between measurements obtained in different experiments, being especially useful when testing similar levels of analyte. Ruiz Tórtola, Á. (2021). Desarrollo de biosensores nanofotónicos de alta sensibilidad para la detección de biomarcadores microRNA en aplicaciones de diagnóstico médico [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172631 TESIS 2021-09-02 info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion http://hdl.handle.net/10251/172631 info:doi:10.4995/Thesis/10251/172631 spa http://rightsstatements.org/vocab/InC/1.0/ info:eu-repo/semantics/openAccess Universitat Politècnica de València |