Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions

[EN] The potential of diesel engines in terms of robustness, efficiency and energy density has made them widely used as power generators and propulsion systems. Specifically, fuel atomization, vaporization and air-fuel mixing, have a fundamental effect on the combustion process, and consequently, a...

Full description

Bibliographic Details
Main Author: Peraza Ávila, Jesús Enrique
Other Authors: Gimeno García, Jaime
Format: Doctoral Thesis
Language:English
Published: Universitat Politècnica de València 2020
Subjects:
ECN
Online Access:http://hdl.handle.net/10251/149389
id ndltd-upv.es-oai-riunet.upv.es-10251-149389
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Spray-wall interaction
Injection
Combustion
Impingment
Liquid
Vapor
Lift-off length
Ignition delay
Flame
Heat flux
Optical diagnostics
Internal combustion engines
ECN
MAQUINAS Y MOTORES TERMICOS
spellingShingle Spray-wall interaction
Injection
Combustion
Impingment
Liquid
Vapor
Lift-off length
Ignition delay
Flame
Heat flux
Optical diagnostics
Internal combustion engines
ECN
MAQUINAS Y MOTORES TERMICOS
Peraza Ávila, Jesús Enrique
Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions
description [EN] The potential of diesel engines in terms of robustness, efficiency and energy density has made them widely used as power generators and propulsion systems. Specifically, fuel atomization, vaporization and air-fuel mixing, have a fundamental effect on the combustion process, and consequently, a direct impact on pollutant formation, fuel consumption and noise emission. Since the combustion chamber has a limited space respect to the spray penetration, wall impingement is considered to be a common event in direct injection diesel engines, having a relevant influence in the spray evolution and its interaction with both surrounding air and solid walls. This makes of spray-wall interaction an important factor for the combustion process that is still hardly understood. At cold-start conditions, the low in-chamber pressures and temperatures promote the deposition of fuel in the piston wall, which leads to a boost in the formation of unburned hydrocarbons. Additionally, modern design trends such as the increment of rail pressures in injection systems and the progressive reduction of the engine displacement, favor the emergence of spray collision onto the walls. In spite of the evident relevance of the comprehension of this phenomenon and the efforts of engine researchers to reach it, the transient nature of injection process, its small time scales and the complexity of the physical phenomena that take place in the vicinity of the wall, make challenging the direct observation of this spray-wall interaction. Even though computational tools have proven to be priceless in this field of study, the need for reliable experimental data for the development of those predictive models is present. This thesis is aimed to shed light on the fundamental characteristics of spray-wall interaction (SWI) at diesel-like chamber conditions. A flat wall was set at different impingement distances and angles respect to the spray. In this way, two different kinds of experimental investigations on colliding sprays were carried out: A transparent quartz wall was employed into the chamber to, in isolation, analyze the macroscopic characteristics of the spray at both evaporative inert and reactive conditions, which have been observed laterally and through the wall, thanks to the use of a high-pressure and high-temperature vessel with optical accesses. This same test rig was used in the second kind of experiments, where instead of the quartz plate, a stainless steel wall was used to capture the effect of the operating conditions on the heat flux between the wall and the spray during the injection-combustion events and to determine how spray and flame evolution are affected by realistic heat transfer situations. This wall was instrumented to control its initial in-chamber surface temperature and to measure its variation with time by using high-speed thermocouples. Tests at free-jet conditions were also performed in order to provide a solid comparative base for those experiments. === [ES] El potencial de los motores diesel en términos de robustez, eficiencia y la densidad de energía los ha hecho ser ampliamente usados como generadores de energía y sistemas propulsivos. Específicamente, la atomización de combustible, vaporización y mezcla de aire y combustible tienen un efecto fundamental en el proceso de combustión y, en consecuencia, un impacto directo en la formación de emisiones contaminantes, consumo de combustible y generación de ruido. Dado que la cámara de combustión tiene un espacio limitado con respecto la capacidad de penetración del chorro, el impacto de la pared se considera bastante común en motores de inyección directa diésel, que tienen una influencia relevante en la evolución del chorro y su interacción con el aire circundante y las paredes sólidas. Esto hace de interacción chorro-pared, un factor importante para el proceso de combustión que aún es dificilmente comprendido. En condiciones de arranque en frío, las bajas presiones y temperaturas en la cámara promueven la deposición de combustible en la pared del pistón, lo que conduce a un aumento en los niveles de formación de hidrocarburos no quemados. Además, las tendencias modernas de diseño como el incremento de las presiones de rail en los sistemas de inyección y la progresiva reducción en la cilindrada de los motores, favorecen la aparición de colisiones entre chorro y pared. A pesar de la evidente importancia en la comprensión de este fenómeno y los esfuerzos de los investigadores para alcanzarla, la transitoria naturaleza del proceso de inyección, sus pequeñas escalas de temporales y la complejidad de los fenómenos físicos que tienen lugar en las proximidades de la pared, hacen que la observación directa de esta interacción chorro-pared sea un desafío. Aunque las herramientas computacionales han demostrado ser invaluables en este campo de estudio, la necesidad de datos experimentales confiables para el desarrollo de esos modelos predictivos está muy presente. Esta tesis tiene como objetivo arrojar luz sobre las características fundamentales de la interacción chorro-pared (SWI por sus siglas en inglés) en condiciones de cámara similares a las de un motor diesel. Se colocó una pared plana a diferentes distancias de impacto y ángulos con respecto al jet. De esta manera, dos tipos diferentes de investigaciones experimentales sobre chorros en colisión se llevaron a cabo: se empleó una pared de cuarzo transparente en la cámara para, de forma aislada, analizar las características macroscópicas del chorro en condiciones evaporativas inertes y reactivas, que pueden observarse lateralmente y a través de la pared, gracias al uso de una instalación de alta presión y alta temperatura ópticamente accesible. Esta misma instalación se utilizó en el segundo tipo de experimentos en los que se introdujo una pared de acero inoxidable para capturar adicionalmente el efecto de las condiciones de operación en el flujo de calor entre ésta y el chorro durante los eventos de inyección y combustión y para determinar cómo la evolución del chorro y la llama son afectadas por una situación realista de transferencia de calor. Esta pared fue instrumentada para controlar la temperatura inicial de su superficie expuesta a la cámara y medir su variación con el tiempo, utilizando termopares de alta velocidad. Ensayos en condiciones de chorro libre también se realizaron para proporcionar una base comparativa sólida para esos experimentos. === [CA] El potencial dels motors dièsel en termes de robustesa, eficiència i la densitat d'energia els ha fet ser àmpliament usats com a generadors d'energia i sistemes propulsius. Específicament, l'atomització de combustible, vaporització i barreja d'aire i combustible tenen un efecte fonamental en el procés de combustió i, en conseqüència, un impacte directe en la formació d'emissions contaminants, consum de combustible i generació de soroll. Atès que la cambra de combustió té un espai limitat pel que fa la capacitat de penetració de l'raig, l'impacte de la paret es considera bastant comú en motors d'injecció directa dièsel, que tenen una influència rellevant en l'evolució del doll i la seva interacció amb el aire circumdant i les parets sòlides. Això fa d'interacció doll-paret, un factor important per al procés de combustió que encara és difícilment comprès. En condicions d'arrencada en fred, les baixes pressions i temperatures a la cambra promouen la deposició de combustible a la paret del pistó, el que condueix a un augment en els nivells de formació d'hidrocarburs no cremats. A més, les tendències modernes de disseny com l'increment de les pressions de rail en els sistemes d'injecció i la progressiva reducció en la cilindrada dels motors, afavoreixen l'aparició de col·lisions entre el doll i la paret. Tot i l'evident importància en la comprensió d'aquest fenomen i els esforços dels investigadors per aconseguir-la, la transitòria naturalesa de l'procés d'injecció, les seves petites escales de temporals i la complexitat dels fenòmens físics que tenen lloc en les proximitats de la paret , fan que l'observació directa d'aquesta interacció doll-paret siga un desafiament. Tot i que les eines computacionals han demostrat ser invaluables en aquest camp d'estudi, la necessitat de dades experimentals fiables per al desenvolupament d'aquests models predictius està molt present. Aquesta tesi té com a objectiu donar llum sobre les característiques fonamentals de la interacció doll-paret (SWI per les seues sigles en anglès) en condicions de cambra similars a les d'un motor dièsel. Es va col·locar una paret plana a diferents distàncies d'impacte i angles pel que fa al jet. D'aquesta manera, dos tipus diferents d'investigacions experimentals sobre dolls en col·lisió es van dur a terme: es va emprar una paret de quars transparent a la cambra per, de forma aïllada, analitzar les característiques macroscòpiques del doll en condicions evaporació inerts i reactives, que poden observar lateralment i a través de la paret, gràcies a l'ús d'una instal·lació d'alta pressió i alta temperatura òpticament accessible. Aquesta mateixa instal·lació es va utilitzar en el segon tipus d'experiments en els quals es va introduir una paret d'acer inoxidable per capturar addicionalment l'efecte de les condicions d'operació en el flux de calor entre aquesta i el dull durant els esdeveniments d'injecció i combustió i per determinar com l'evolució del doll i la flama són afectades per una situació realista de transferència de calor. Aquesta paret va ser instrumentada per controlar la temperatura inicial de la seua superfície exposada a la càmera i mesurar la seua variació amb el temps, utilitzant termoparells d'alta velocitat. Assajos en condicions de doll lliure també es van realitzar per proporcionar una base comparativa sòlida per a aquests experiments. === Peraza Ávila, JE. (2020). Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149389 === TESIS
author2 Gimeno García, Jaime
author_facet Gimeno García, Jaime
Peraza Ávila, Jesús Enrique
author Peraza Ávila, Jesús Enrique
author_sort Peraza Ávila, Jesús Enrique
title Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions
title_short Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions
title_full Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions
title_fullStr Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions
title_full_unstemmed Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions
title_sort experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions
publisher Universitat Politècnica de València
publishDate 2020
url http://hdl.handle.net/10251/149389
work_keys_str_mv AT perazaavilajesusenrique experimentalstudyofthedieselspraybehaviorduringthejetwallinteractionathighpressureandhightemperatureconditions
_version_ 1719368119723491328
spelling ndltd-upv.es-oai-riunet.upv.es-10251-1493892020-12-02T20:23:06Z Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions Peraza Ávila, Jesús Enrique Gimeno García, Jaime Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics Spray-wall interaction Injection Combustion Impingment Liquid Vapor Lift-off length Ignition delay Flame Heat flux Optical diagnostics Internal combustion engines ECN MAQUINAS Y MOTORES TERMICOS [EN] The potential of diesel engines in terms of robustness, efficiency and energy density has made them widely used as power generators and propulsion systems. Specifically, fuel atomization, vaporization and air-fuel mixing, have a fundamental effect on the combustion process, and consequently, a direct impact on pollutant formation, fuel consumption and noise emission. Since the combustion chamber has a limited space respect to the spray penetration, wall impingement is considered to be a common event in direct injection diesel engines, having a relevant influence in the spray evolution and its interaction with both surrounding air and solid walls. This makes of spray-wall interaction an important factor for the combustion process that is still hardly understood. At cold-start conditions, the low in-chamber pressures and temperatures promote the deposition of fuel in the piston wall, which leads to a boost in the formation of unburned hydrocarbons. Additionally, modern design trends such as the increment of rail pressures in injection systems and the progressive reduction of the engine displacement, favor the emergence of spray collision onto the walls. In spite of the evident relevance of the comprehension of this phenomenon and the efforts of engine researchers to reach it, the transient nature of injection process, its small time scales and the complexity of the physical phenomena that take place in the vicinity of the wall, make challenging the direct observation of this spray-wall interaction. Even though computational tools have proven to be priceless in this field of study, the need for reliable experimental data for the development of those predictive models is present. This thesis is aimed to shed light on the fundamental characteristics of spray-wall interaction (SWI) at diesel-like chamber conditions. A flat wall was set at different impingement distances and angles respect to the spray. In this way, two different kinds of experimental investigations on colliding sprays were carried out: A transparent quartz wall was employed into the chamber to, in isolation, analyze the macroscopic characteristics of the spray at both evaporative inert and reactive conditions, which have been observed laterally and through the wall, thanks to the use of a high-pressure and high-temperature vessel with optical accesses. This same test rig was used in the second kind of experiments, where instead of the quartz plate, a stainless steel wall was used to capture the effect of the operating conditions on the heat flux between the wall and the spray during the injection-combustion events and to determine how spray and flame evolution are affected by realistic heat transfer situations. This wall was instrumented to control its initial in-chamber surface temperature and to measure its variation with time by using high-speed thermocouples. Tests at free-jet conditions were also performed in order to provide a solid comparative base for those experiments. [ES] El potencial de los motores diesel en términos de robustez, eficiencia y la densidad de energía los ha hecho ser ampliamente usados como generadores de energía y sistemas propulsivos. Específicamente, la atomización de combustible, vaporización y mezcla de aire y combustible tienen un efecto fundamental en el proceso de combustión y, en consecuencia, un impacto directo en la formación de emisiones contaminantes, consumo de combustible y generación de ruido. Dado que la cámara de combustión tiene un espacio limitado con respecto la capacidad de penetración del chorro, el impacto de la pared se considera bastante común en motores de inyección directa diésel, que tienen una influencia relevante en la evolución del chorro y su interacción con el aire circundante y las paredes sólidas. Esto hace de interacción chorro-pared, un factor importante para el proceso de combustión que aún es dificilmente comprendido. En condiciones de arranque en frío, las bajas presiones y temperaturas en la cámara promueven la deposición de combustible en la pared del pistón, lo que conduce a un aumento en los niveles de formación de hidrocarburos no quemados. Además, las tendencias modernas de diseño como el incremento de las presiones de rail en los sistemas de inyección y la progresiva reducción en la cilindrada de los motores, favorecen la aparición de colisiones entre chorro y pared. A pesar de la evidente importancia en la comprensión de este fenómeno y los esfuerzos de los investigadores para alcanzarla, la transitoria naturaleza del proceso de inyección, sus pequeñas escalas de temporales y la complejidad de los fenómenos físicos que tienen lugar en las proximidades de la pared, hacen que la observación directa de esta interacción chorro-pared sea un desafío. Aunque las herramientas computacionales han demostrado ser invaluables en este campo de estudio, la necesidad de datos experimentales confiables para el desarrollo de esos modelos predictivos está muy presente. Esta tesis tiene como objetivo arrojar luz sobre las características fundamentales de la interacción chorro-pared (SWI por sus siglas en inglés) en condiciones de cámara similares a las de un motor diesel. Se colocó una pared plana a diferentes distancias de impacto y ángulos con respecto al jet. De esta manera, dos tipos diferentes de investigaciones experimentales sobre chorros en colisión se llevaron a cabo: se empleó una pared de cuarzo transparente en la cámara para, de forma aislada, analizar las características macroscópicas del chorro en condiciones evaporativas inertes y reactivas, que pueden observarse lateralmente y a través de la pared, gracias al uso de una instalación de alta presión y alta temperatura ópticamente accesible. Esta misma instalación se utilizó en el segundo tipo de experimentos en los que se introdujo una pared de acero inoxidable para capturar adicionalmente el efecto de las condiciones de operación en el flujo de calor entre ésta y el chorro durante los eventos de inyección y combustión y para determinar cómo la evolución del chorro y la llama son afectadas por una situación realista de transferencia de calor. Esta pared fue instrumentada para controlar la temperatura inicial de su superficie expuesta a la cámara y medir su variación con el tiempo, utilizando termopares de alta velocidad. Ensayos en condiciones de chorro libre también se realizaron para proporcionar una base comparativa sólida para esos experimentos. [CA] El potencial dels motors dièsel en termes de robustesa, eficiència i la densitat d'energia els ha fet ser àmpliament usats com a generadors d'energia i sistemes propulsius. Específicament, l'atomització de combustible, vaporització i barreja d'aire i combustible tenen un efecte fonamental en el procés de combustió i, en conseqüència, un impacte directe en la formació d'emissions contaminants, consum de combustible i generació de soroll. Atès que la cambra de combustió té un espai limitat pel que fa la capacitat de penetració de l'raig, l'impacte de la paret es considera bastant comú en motors d'injecció directa dièsel, que tenen una influència rellevant en l'evolució del doll i la seva interacció amb el aire circumdant i les parets sòlides. Això fa d'interacció doll-paret, un factor important per al procés de combustió que encara és difícilment comprès. En condicions d'arrencada en fred, les baixes pressions i temperatures a la cambra promouen la deposició de combustible a la paret del pistó, el que condueix a un augment en els nivells de formació d'hidrocarburs no cremats. A més, les tendències modernes de disseny com l'increment de les pressions de rail en els sistemes d'injecció i la progressiva reducció en la cilindrada dels motors, afavoreixen l'aparició de col·lisions entre el doll i la paret. Tot i l'evident importància en la comprensió d'aquest fenomen i els esforços dels investigadors per aconseguir-la, la transitòria naturalesa de l'procés d'injecció, les seves petites escales de temporals i la complexitat dels fenòmens físics que tenen lloc en les proximitats de la paret , fan que l'observació directa d'aquesta interacció doll-paret siga un desafiament. Tot i que les eines computacionals han demostrat ser invaluables en aquest camp d'estudi, la necessitat de dades experimentals fiables per al desenvolupament d'aquests models predictius està molt present. Aquesta tesi té com a objectiu donar llum sobre les característiques fonamentals de la interacció doll-paret (SWI per les seues sigles en anglès) en condicions de cambra similars a les d'un motor dièsel. Es va col·locar una paret plana a diferents distàncies d'impacte i angles pel que fa al jet. D'aquesta manera, dos tipus diferents d'investigacions experimentals sobre dolls en col·lisió es van dur a terme: es va emprar una paret de quars transparent a la cambra per, de forma aïllada, analitzar les característiques macroscòpiques del doll en condicions evaporació inerts i reactives, que poden observar lateralment i a través de la paret, gràcies a l'ús d'una instal·lació d'alta pressió i alta temperatura òpticament accessible. Aquesta mateixa instal·lació es va utilitzar en el segon tipus d'experiments en els quals es va introduir una paret d'acer inoxidable per capturar addicionalment l'efecte de les condicions d'operació en el flux de calor entre aquesta i el dull durant els esdeveniments d'injecció i combustió i per determinar com l'evolució del doll i la flama són afectades per una situació realista de transferència de calor. Aquesta paret va ser instrumentada per controlar la temperatura inicial de la seua superfície exposada a la càmera i mesurar la seua variació amb el temps, utilitzant termoparells d'alta velocitat. Assajos en condicions de doll lliure també es van realitzar per proporcionar una base comparativa sòlida per a aquests experiments. Peraza Ávila, JE. (2020). Experimental study of the diesel spray behavior during the jet-wall interaction at high pressure and high temperature conditions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149389 TESIS 2020-09-02 info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion http://hdl.handle.net/10251/149389 10.4995/Thesis/10251/149389 eng http://rightsstatements.org/vocab/InC/1.0/ info:eu-repo/semantics/openAccess Universitat Politècnica de València