Magnus-based geometric integrators for dynamical systems with time-dependent potentials
[ES] Esta tesis trata sobre la integración numérica de sistemas hamiltonianos con potenciales explícitamente dependientes del tiempo. Los problemas de este tipo son comunes en la física matemática, porque provienen de la mecánica cuántica, clásica y celestial. La meta de la tesis es construir integ...
Main Author: | Kopylov, Nikita |
---|---|
Other Authors: | Bader, Philipp Karl Heinz |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Universitat Politècnica de València
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10251/118798 |
Similar Items
-
Geometric Integrators for Schrödinger Equations
by: Bader, Philipp Karl-Heinz
Published: (2014) -
A numerical approximation to some specific nonlinear differential equations using magnus series expansion method
by: Sure Kome, et al.
Published: (2016-01-01) -
Geometric numerical integrators based on the Magnus expansion in bifurcation problems for non-linear elastic solids
by: A. Castellano, et al.
Published: (2014-07-01) -
Comparative numerical solutions of stiff Ordinary differential equations using magnus series expansion method
by: SURE KÖME, et al.
Published: (2014-12-01) -
Comparative numerical solutions of stiff Ordinary differential equations using magnus series expansion method
by: SURE KÖME, et al.
Published: (2014-12-01)