Ένας έλεγχος καλής προσαρμογής για συνεχείς δισδιάστατες κατανομές

Η παρούσα διπλωματική εργασία αντλεί την θεματολογία της από την θεωρία ελέγχων καλής προσαρμογής. Δίνονται τα βασικά σημεία της θεωρίας ελεγχοσυναρτήσεων και στη συνέχεια παρουσιάζεται η επέκταση του έλεγχου των Kolmogorov-Smirnov στο διδιάστατο χώρο καθώς και μια τροποποίησή της. Βασικό βοήθημα γι...

Full description

Bibliographic Details
Main Author: Αλεξόπουλος, Ανδρέας
Other Authors: Πιπερίγκου, Βιολέττα
Language:gr
Published: 2007
Subjects:
Online Access:http://nemertes.lis.upatras.gr/jspui/handle/10889/610
Description
Summary:Η παρούσα διπλωματική εργασία αντλεί την θεματολογία της από την θεωρία ελέγχων καλής προσαρμογής. Δίνονται τα βασικά σημεία της θεωρίας ελεγχοσυναρτήσεων και στη συνέχεια παρουσιάζεται η επέκταση του έλεγχου των Kolmogorov-Smirnov στο διδιάστατο χώρο καθώς και μια τροποποίησή της. Βασικό βοήθημα για την επέκταση αυτή αποτελεί το θεώρημα του Rosenblatt, το οποίο προτείνει ένα μετασχηματισμό μιας απόλυτα συνεχούς k-διάστατης κατανομής σε ομοιόμορφη κατανομή στον k-διάστατο υπερκύβο. Παρουσιάζεται επίσης το στατιστικό Α, το οποίο προτάθηκε από τον Damico. Η ιδιαιτερότητα αυτού του στατιστικού είναι ότι έχει διακριτή κατανομή. Προτείνεται ένα στατιστικό για τον έλεγχο καλής προσαρμογής συνεχών δεδομένων αρχικά στις δύο και στη συνέχεια στις k διαστάσεις. Ως εργαλεία χρησιμοποιήθηκαν το στατιστικό Α και το Θεώρημα του Rosenblatt. Για διάφορα μεγέθη δείγματος, δίνονται ο πίνακας πιθανοτήτων για τις τιμές του στατιστικού καθώς και ο πίνακας με τις κρίσιμες τιμές για διάφορες τιμές του p-value. Οι πίνακες αυτοί προέκυψαν κυρίως με μεθόδους προσομοίωσης. Τέλος, υπολογίστηκε η ισχύς του ελέγχου και γίνεται σύγκριση με την ισχύ του διδιάστατου Kolmogorov-Smirnov. === This project is based in theory of goodness-fit-tests. We present the most important componenets of test funcion theory. Also, we present the extension of the Kolmogorov-Smirnov test in bivariate case and an approximation. This extension is based on Rosenblatt's theorem, which suggests a transformation of an absolutly continious k-variate distribution into the uniform distribution of the k-dimentional hypercube. Moreover, is presented the statistic A, which was suggested from Damico. The particularity of this statistic is that has a district contribution. We suggest a goodnes-of-fit test for continious data first on two dimensions and after on k dimensions. This new statistic uses Rosenblatt's transformation and the statistic A. For different sizes of sample, are given the table of probablities and the table with the critical values. These tables were arised with simulation methods. Finally, was computed the power of the test and was compared with the power of the bivariate Kolmogorv-Smirnov.