Αυτόματη επιλογή σημασιολογικά συγγενών όρων για την επαναδιατύπωση των ερωτημάτων σε μηχανές αναζήτησης πληροφορίας

Η βελτίωση ερωτημάτων (Query refinement) είναι η διαδικασία πρότασης εναλλακτικών όρων στους χρήστες των μηχανών αναζήτησης του Διαδικτύου για την διατύπωση της πληροφοριακής τους ανάγκης. Παρόλο που εναλλακτικοί σχηματισμοί ερωτημάτων μπορούν να συνεισφέρουν στην βελτίωση των ανακτηθέντων αποτελεσμ...

Full description

Bibliographic Details
Main Author: Κοζανίδης, Ελευθέριος
Other Authors: Χριστοδουλάκης, Δημήτριος
Language:gr
Published: 2007
Subjects:
Online Access:http://nemertes.lis.upatras.gr/jspui/handle/10889/519
Description
Summary:Η βελτίωση ερωτημάτων (Query refinement) είναι η διαδικασία πρότασης εναλλακτικών όρων στους χρήστες των μηχανών αναζήτησης του Διαδικτύου για την διατύπωση της πληροφοριακής τους ανάγκης. Παρόλο που εναλλακτικοί σχηματισμοί ερωτημάτων μπορούν να συνεισφέρουν στην βελτίωση των ανακτηθέντων αποτελεσμάτων, η χρησιμοποίησή τους από χρήστες του Διαδικτύου είναι ιδιαίτερα περιορισμένη καθώς οι όροι των βελτιωμένων ερωτημάτων δεν περιέχουν σχεδόν καθόλου πληροφορία αναφορικά με τον βαθμό ομοιότητάς τους με τους όρους του αρχικού ερωτήματος, ενώ συγχρόνως δεν καταδεικνύουν το βαθμό συσχέτισής τους με τα πληροφοριακά ενδιαφέροντα των χρηστών. Παραδοσιακά, οι εναλλακτικοί σχηματισμοί ερωτημάτων καθορίζονται κατ’ αποκλειστικότητα από τη σημασιολογική σχέση που επιδεικνύουν οι συμπληρωματικοί όροι με τους αρχικούς όρους του ερωτήματος, χωρίς να λαμβάνουν υπόψη τον επιδιωκόμενο στόχο της αναζήτησης που υπολανθάνει πίσω από ένα ερώτημα του χρήστη. Στην παρούσα εργασία θα παρουσιάσουμε μια πρότυπη τεχνική βελτίωσης ερωτημάτων η οποία χρησιμοποιεί μια λεξική οντολογία προκειμένου να εντοπίσει εναλλακτικούς σχηματισμούς ερωτημάτων οι οποίοι αφενός, θα περιγράφουν το αντικείμενο της αναζήτησης του χρήστη και αφετέρου θα σχετίζονται με τα ερωτήματα που υπέβαλε ο χρήστης. Το πιο πρωτοποριακό χαρακτηριστικό της τεχνικής μας είναι η οπτική αναπαράσταση του εναλλακτικού ερωτήματος με την μορφή ενός ιεραρχικά δομημένου γράφου. Η αναπαράσταση αυτή παρέχει σαφείς πληροφορίες για την σημασιολογική σχέση μεταξύ των όρων του βελτιωμένου ερωτήματος και των όρων που χρησιμοποίησε ο χρήστης για να εκφράσει την πληροφοριακή του ανάγκη ενώ παράλληλα παρέχει την δυνατότητα στον χρήστη να επιλέξει ποιοι από τους υποψήφιους όρους θα συμμετέχουν τελικά στην διαδικασία βελτιστοποίησης δημιουργώντας διαδραστικά το νέο ερώτημα. Τα αποτελέσματα των πειραμάτων που διενεργήσαμε για να αξιολογήσουμε την απόδοση της τεχνικής μας, είναι ιδιαίτερα ικανοποιητικά και μας οδηγούν στο συμπέρασμα ότι η μέθοδός μας μπορεί να βοηθήσει σημαντικά στη διευκόλυνση του χρήστη κατά τη διαδικασία επιλογής ερωτημάτων για την ανάκτηση πληροφορίας από τα δεδομένα του Παγκόσμιου Ιστού. === Query refinement is the process of providing Web information seekers with alternative wordings for expressing their information needs. Although alternative query formulations may contribute to the improvement of retrieval results, nevertheless their realization by Web users is intrinsically limited in that alternative query wordings do not convey explicit information about neither their degree nor their type of correlation to the user-issued queries. Moreover, alternative query formulations are determined based on the semantics of the issued query alone and they do not consider anything about the search intentions of the user issuing that query. In this paper, we introduce a novel query refinement technique which uses a lexical ontology for identifying alternative query formulations that are both informative of the user’s interests and related to the user selected queries. The most innovative feature of our technique is the visualization of the alternative query wordings in a graphical representation form, which conveys explicit information about the refined queries correlation to the user issued requests and which allows the user select which terms to participate in the refinement process. Experimental results demonstrate that our method has a significant potential in improving the user search experience.