Bifurcation analysis of a class of delay-differential equations with reflectional symmetry: Applications to ENSO.

We consider a general class of first-order nonlinear delay-differential equations (DDEs) with reflectional symmetry, and study completely the bifurcations of the trivial equilibrium under some generic conditions on the Taylor coefficients of the DDE. Our analysis reveals a Hopf bifurcation curve ter...

Full description

Bibliographic Details
Main Author: Redmond, Brian F.
Other Authors: LeBlanc, Victor
Format: Others
Published: University of Ottawa (Canada) 2009
Subjects:
Online Access:http://hdl.handle.net/10393/6242
http://dx.doi.org/10.20381/ruor-11160
Description
Summary:We consider a general class of first-order nonlinear delay-differential equations (DDEs) with reflectional symmetry, and study completely the bifurcations of the trivial equilibrium under some generic conditions on the Taylor coefficients of the DDE. Our analysis reveals a Hopf bifurcation curve terminating on a pitchfork bifurcation line at a codimension two Takens-Bogdanov point in parameter space. We compute the normal form coefficients of the reduced vector field on the centre manifold in terms of the Taylor coefficients of the original DDE, and in contrast to many previous bifurcation analyses of DDEs, we also compute the unfolding parameters in terms of these coefficients. For application purposes, this is important since one can now identify the possible asymptotic dynamics of the DDE near the bifurcation points by computing quantities which depend explicitly on the Taylor coefficients of the original DDE. We illustrate these results using simple model systems relevant to the areas of neural networks and atmospheric physics, and show that the results agree with numerical simulations. Finally, note that most of the results of this thesis have already been refereed and published elsewhere (see [26]).