Image Transfer Between Magnetic Resonance Images and Speech Diagrams

Realtime Magnetic Resonance Imaging (MRI) is a method used for human anatomical study. MRIs give exceptionally detailed information about soft-tissue structures, such as tongues, that other current imaging techniques cannot achieve. However, the process requires special equipment and is expensive...

Full description

Bibliographic Details
Main Author: Wang, Kang
Other Authors: Lee, Wonsook
Format: Others
Language:en
Published: Université d'Ottawa / University of Ottawa 2020
Subjects:
MRI
Online Access:http://hdl.handle.net/10393/41533
http://dx.doi.org/10.20381/ruor-25757
Description
Summary:Realtime Magnetic Resonance Imaging (MRI) is a method used for human anatomical study. MRIs give exceptionally detailed information about soft-tissue structures, such as tongues, that other current imaging techniques cannot achieve. However, the process requires special equipment and is expensive. Hence, it is not quite suitable for all patients. Speech diagrams show the side view positions of organs like the tongue, throat, and lip of a speaking or singing person. The process of making a speech diagram is like the semantic segmentation of an MRI, which focuses on the selected edge structure. Speech diagrams are easy to understand with a clear speech diagram of the tongue and inside mouth structure. However, it often requires manual annotation on the MRI machine by an expert in the field. By using machine learning methods, we achieved transferring images between MRI and speech diagrams in two directions. We first matched videos of speech diagram and tongue MRIs. Then we used various image processing methods and data augmentation methods to make the paired images easy to train. We built our network model inspired by different cross-domain image transfer methods and applied reference-based super-resolution methods—to generate high-resolution images. Thus, we can do the transferring work through our network instead of manually. Also, generated speech diagram can work as an intermediary part to be transferred to other medical images like computerized tomography (CT), since it is simpler in structure compared to an MRI. We conducted experiments using both the data from our database and other MRI video sources. We use multiple methods to do the evaluation and comparisons with several related methods show the superiority of our approach.