Catecholaminergic Axonal Remodeling in Motor Cortex of Mice Following Stroke

Stroke is a leading cause of death and morbidity worldwide, and leaves stroke survivors with chronic disabilities. One of the key mechanisms that the brain triggers during stroke recovery is the sprouting of new axons and the formation of new neuronal connections. Meanwhile, studies have evidenced...

Full description

Bibliographic Details
Main Author: Said, Aida
Other Authors: Tiberi, Mario
Format: Others
Language:en
Published: Université d'Ottawa / University of Ottawa 2020
Subjects:
DHX
Online Access:http://hdl.handle.net/10393/40046
http://dx.doi.org/10.20381/ruor-24285
id ndltd-uottawa.ca-oai-ruor.uottawa.ca-10393-40046
record_format oai_dc
collection NDLTD
language en
format Others
sources NDLTD
topic PhosphoTHser40.
Chatecolaminergic axons
remodeling
TH axons
NET axons
stroke
mice
DHX
PhosphoTHser31
spellingShingle PhosphoTHser40.
Chatecolaminergic axons
remodeling
TH axons
NET axons
stroke
mice
DHX
PhosphoTHser31
Said, Aida
Catecholaminergic Axonal Remodeling in Motor Cortex of Mice Following Stroke
description Stroke is a leading cause of death and morbidity worldwide, and leaves stroke survivors with chronic disabilities. One of the key mechanisms that the brain triggers during stroke recovery is the sprouting of new axons and the formation of new neuronal connections. Meanwhile, studies have evidenced this phenomenon with methods using unspecific cell/axon markers. The dopamine (DA) system is thought to be implicated in stroke recovery. However, the specific contribution and remodeling of this system to enhance stroke recovery, and whether D1- class receptors play a role in this process, remain unclear. Using a mouse photothrombosis stroke model, immunohistochemical methods, imaging analysis of axonal fiber density and branching in the motor cortex, we demonstrated a specific dopaminergic axon remodeling in the periinfarct region, with or without DA agonist administration. Axonal remodeling of noradrenergic fibers was subtle. In mice subjected to saline IP injection and physical rehabilitation (running wheels), we observed an increase of only DA fiber density in the periinfarct area as compared to the contralateral (intact) side. However, mice treated with DHX for 7 days followed by physical rehabilitation did not show difference between the two hemispheres. Our results suggest a modulatory effect of DHX on axonal remodeling mainly in the contralateral side. Interestingly, treatment of naïve mice with DHX had no effect of DA axon remodeling suggesting that D1- mediated axonal remodeling is stroke-dependent. We also established the temporal profile of post-stroke DA axon remodeling in the absence of DHX and physical rehabilitation. At 4 days poststroke, there was a significant decrease in DA fiber density and a significant recovery was measured after 28 days relative to the contralateral side. Altogether, our data highlight a major remodeling of DA axons in motor cortex following stroke, and a potential role for D1-class receptors in improving post-stroke recovery. Understanding adaptations of the DA system following stroke will have a great impact on stroke recovery research. Aida Said Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Master of Science degree in Neuroscience Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa August 30, 2019 © Aida Said, Ottawa, Canada, 2019   Abstract Stroke is a leading cause of death and morbidity worldwide, and leaves stroke survivors with chronic disabilities. One of the key mechanisms that the brain triggers during stroke recovery is the sprouting of new axons and the formation of new neuronal connections. Meanwhile, studies have evidenced this phenomenon with methods using unspecific cell/axon markers. The dopamine (DA) system is thought to be implicated in stroke recovery. However, the specific contribution and remodeling of this system to enhance stroke recovery, and whether D1-class receptors play a role in this process, remain unclear. Using a mouse photothrombosis stroke model, immunohistochemical methods, imaging analysis of axonal fiber density and branching in the motor cortex, we demonstrated a specific dopaminergic axon remodeling in the periinfarct region, with or without DA agonist administration. Axonal remodeling of noradrenergic fibers was subtle. In mice subjected to saline IP injection and physical rehabilitation (running wheels), we observed an increase of only DA fiber density in the periinfarct area as compared to the contralateral (intact) side. However, mice treated with DHX for 7 days followed by physical rehabilitation did not show difference between the two hemispheres. Our results suggest a modulatory effect of DHX on axonal remodeling mainly in the contralateral side. Interestingly, treatment of naïve mice with DHX had no effect of DA axon remodeling suggesting that D1-mediated axonal remodeling is stroke-dependent. We also established the temporal profile of post-stroke DA axon remodeling in the absence of DHX and physical rehabilitation. At 4 days post-stroke, there was a significant decrease in DA fiber density and a significant recovery was measured after 28 days relative to the contralateral side. Altogether, our data highlight a major remodeling of DA axons in motor cortex following stroke, and a potential role for D1-class receptors in improving post-stroke recovery. Understanding adaptations of the DA system following stroke will have a great impact on stroke recovery research.
author2 Tiberi, Mario
author_facet Tiberi, Mario
Said, Aida
author Said, Aida
author_sort Said, Aida
title Catecholaminergic Axonal Remodeling in Motor Cortex of Mice Following Stroke
title_short Catecholaminergic Axonal Remodeling in Motor Cortex of Mice Following Stroke
title_full Catecholaminergic Axonal Remodeling in Motor Cortex of Mice Following Stroke
title_fullStr Catecholaminergic Axonal Remodeling in Motor Cortex of Mice Following Stroke
title_full_unstemmed Catecholaminergic Axonal Remodeling in Motor Cortex of Mice Following Stroke
title_sort catecholaminergic axonal remodeling in motor cortex of mice following stroke
publisher Université d'Ottawa / University of Ottawa
publishDate 2020
url http://hdl.handle.net/10393/40046
http://dx.doi.org/10.20381/ruor-24285
work_keys_str_mv AT saidaida catecholaminergicaxonalremodelinginmotorcortexofmicefollowingstroke
_version_ 1719308391101235200
spelling ndltd-uottawa.ca-oai-ruor.uottawa.ca-10393-400462020-01-11T03:38:31Z Catecholaminergic Axonal Remodeling in Motor Cortex of Mice Following Stroke Said, Aida Tiberi, Mario PhosphoTHser40. Chatecolaminergic axons remodeling TH axons NET axons stroke mice DHX PhosphoTHser31 Stroke is a leading cause of death and morbidity worldwide, and leaves stroke survivors with chronic disabilities. One of the key mechanisms that the brain triggers during stroke recovery is the sprouting of new axons and the formation of new neuronal connections. Meanwhile, studies have evidenced this phenomenon with methods using unspecific cell/axon markers. The dopamine (DA) system is thought to be implicated in stroke recovery. However, the specific contribution and remodeling of this system to enhance stroke recovery, and whether D1- class receptors play a role in this process, remain unclear. Using a mouse photothrombosis stroke model, immunohistochemical methods, imaging analysis of axonal fiber density and branching in the motor cortex, we demonstrated a specific dopaminergic axon remodeling in the periinfarct region, with or without DA agonist administration. Axonal remodeling of noradrenergic fibers was subtle. In mice subjected to saline IP injection and physical rehabilitation (running wheels), we observed an increase of only DA fiber density in the periinfarct area as compared to the contralateral (intact) side. However, mice treated with DHX for 7 days followed by physical rehabilitation did not show difference between the two hemispheres. Our results suggest a modulatory effect of DHX on axonal remodeling mainly in the contralateral side. Interestingly, treatment of naïve mice with DHX had no effect of DA axon remodeling suggesting that D1- mediated axonal remodeling is stroke-dependent. We also established the temporal profile of post-stroke DA axon remodeling in the absence of DHX and physical rehabilitation. At 4 days poststroke, there was a significant decrease in DA fiber density and a significant recovery was measured after 28 days relative to the contralateral side. Altogether, our data highlight a major remodeling of DA axons in motor cortex following stroke, and a potential role for D1-class receptors in improving post-stroke recovery. Understanding adaptations of the DA system following stroke will have a great impact on stroke recovery research. Aida Said Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Master of Science degree in Neuroscience Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa August 30, 2019 © Aida Said, Ottawa, Canada, 2019   Abstract Stroke is a leading cause of death and morbidity worldwide, and leaves stroke survivors with chronic disabilities. One of the key mechanisms that the brain triggers during stroke recovery is the sprouting of new axons and the formation of new neuronal connections. Meanwhile, studies have evidenced this phenomenon with methods using unspecific cell/axon markers. The dopamine (DA) system is thought to be implicated in stroke recovery. However, the specific contribution and remodeling of this system to enhance stroke recovery, and whether D1-class receptors play a role in this process, remain unclear. Using a mouse photothrombosis stroke model, immunohistochemical methods, imaging analysis of axonal fiber density and branching in the motor cortex, we demonstrated a specific dopaminergic axon remodeling in the periinfarct region, with or without DA agonist administration. Axonal remodeling of noradrenergic fibers was subtle. In mice subjected to saline IP injection and physical rehabilitation (running wheels), we observed an increase of only DA fiber density in the periinfarct area as compared to the contralateral (intact) side. However, mice treated with DHX for 7 days followed by physical rehabilitation did not show difference between the two hemispheres. Our results suggest a modulatory effect of DHX on axonal remodeling mainly in the contralateral side. Interestingly, treatment of naïve mice with DHX had no effect of DA axon remodeling suggesting that D1-mediated axonal remodeling is stroke-dependent. We also established the temporal profile of post-stroke DA axon remodeling in the absence of DHX and physical rehabilitation. At 4 days post-stroke, there was a significant decrease in DA fiber density and a significant recovery was measured after 28 days relative to the contralateral side. Altogether, our data highlight a major remodeling of DA axons in motor cortex following stroke, and a potential role for D1-class receptors in improving post-stroke recovery. Understanding adaptations of the DA system following stroke will have a great impact on stroke recovery research. 2020-01-09T17:50:46Z 2020-01-09 Thesis http://hdl.handle.net/10393/40046 http://dx.doi.org/10.20381/ruor-24285 en application/pdf Université d'Ottawa / University of Ottawa