Ubiquitous Biofeedback Multimedia Systems

Human wellbeing, in a large component, relies on the harmony between the body and the mind. Unfortunately, we often miss or ignore important signals from our bodies, and sometimes this can negatively impact our health. Therefore, the use of intelligent systems that grasp such signals and convey them...

Full description

Bibliographic Details
Main Author: Al Osman, Hussein
Other Authors: El Saddik, Abdulmotaleb
Language:en
Published: Université d'Ottawa / University of Ottawa 2014
Subjects:
Online Access:http://hdl.handle.net/10393/31229
http://dx.doi.org/10.20381/ruor-3807
id ndltd-uottawa.ca-oai-ruor.uottawa.ca-10393-31229
record_format oai_dc
spelling ndltd-uottawa.ca-oai-ruor.uottawa.ca-10393-312292018-01-05T19:02:02Z Ubiquitous Biofeedback Multimedia Systems Al Osman, Hussein El Saddik, Abdulmotaleb Biofeedback Heart Rate Variability Serious Games Ubiquitous Biofeedback Games for Health Health Informatics Human wellbeing, in a large component, relies on the harmony between the body and the mind. Unfortunately, we often miss or ignore important signals from our bodies, and sometimes this can negatively impact our health. Therefore, the use of intelligent systems that grasp such signals and convey them in an intuitive manner to our minds can result in great health benefits. In this Thesis, we introduce a family of multimedia technologies and techniques aimed at realizing such systems. We call them: Ubiquitous Biofeedback Multimedia Systems. Although the notion of clinical biofeedback has been around for years, we introduce the concept of Ubiquitous Biofeedback where the biofeedback operation is given geographical and temporal ubiquity attributes. A Ubiquitous Biofeedback reference model is introduced in the Thesis to provide an abstract structural representation of the various components at play in a typical non-clinical biofeedback environment. Two systems that implement the reference model’s components are presented. These systems implement the concept of Ubiquitous Biofeedback through the introduction of innovative stress management methods. An important component of these systems guides users through a relaxation routine. Therefore, a mathematical model is developed in the goal of personalizing the relaxation process. Its objective is to suggest relaxation techniques to a user during a stressful episode based on her or his preferences, history of what worked well and appropriateness for the context. The mental stress monitoring mechanism built into the Ubiquitous Biofeedback systems presented in this Thesis relies on the measurement of Heart Rate Variability (HRV). Therefore, HRV based methods for tracking mental stress accumulation and acute manifestations during long term monitoring have been devised. Also, since HRV signals can be plagued by artifacts, several algorithms are contributed to the effort of correcting such occurrences. 2014-07-02T13:21:19Z 2014-07-02T13:21:19Z 2014 2014 Thesis http://hdl.handle.net/10393/31229 http://dx.doi.org/10.20381/ruor-3807 en Université d'Ottawa / University of Ottawa
collection NDLTD
language en
sources NDLTD
topic Biofeedback
Heart Rate Variability
Serious Games
Ubiquitous Biofeedback
Games for Health
Health Informatics
spellingShingle Biofeedback
Heart Rate Variability
Serious Games
Ubiquitous Biofeedback
Games for Health
Health Informatics
Al Osman, Hussein
Ubiquitous Biofeedback Multimedia Systems
description Human wellbeing, in a large component, relies on the harmony between the body and the mind. Unfortunately, we often miss or ignore important signals from our bodies, and sometimes this can negatively impact our health. Therefore, the use of intelligent systems that grasp such signals and convey them in an intuitive manner to our minds can result in great health benefits. In this Thesis, we introduce a family of multimedia technologies and techniques aimed at realizing such systems. We call them: Ubiquitous Biofeedback Multimedia Systems. Although the notion of clinical biofeedback has been around for years, we introduce the concept of Ubiquitous Biofeedback where the biofeedback operation is given geographical and temporal ubiquity attributes. A Ubiquitous Biofeedback reference model is introduced in the Thesis to provide an abstract structural representation of the various components at play in a typical non-clinical biofeedback environment. Two systems that implement the reference model’s components are presented. These systems implement the concept of Ubiquitous Biofeedback through the introduction of innovative stress management methods. An important component of these systems guides users through a relaxation routine. Therefore, a mathematical model is developed in the goal of personalizing the relaxation process. Its objective is to suggest relaxation techniques to a user during a stressful episode based on her or his preferences, history of what worked well and appropriateness for the context. The mental stress monitoring mechanism built into the Ubiquitous Biofeedback systems presented in this Thesis relies on the measurement of Heart Rate Variability (HRV). Therefore, HRV based methods for tracking mental stress accumulation and acute manifestations during long term monitoring have been devised. Also, since HRV signals can be plagued by artifacts, several algorithms are contributed to the effort of correcting such occurrences.
author2 El Saddik, Abdulmotaleb
author_facet El Saddik, Abdulmotaleb
Al Osman, Hussein
author Al Osman, Hussein
author_sort Al Osman, Hussein
title Ubiquitous Biofeedback Multimedia Systems
title_short Ubiquitous Biofeedback Multimedia Systems
title_full Ubiquitous Biofeedback Multimedia Systems
title_fullStr Ubiquitous Biofeedback Multimedia Systems
title_full_unstemmed Ubiquitous Biofeedback Multimedia Systems
title_sort ubiquitous biofeedback multimedia systems
publisher Université d'Ottawa / University of Ottawa
publishDate 2014
url http://hdl.handle.net/10393/31229
http://dx.doi.org/10.20381/ruor-3807
work_keys_str_mv AT alosmanhussein ubiquitousbiofeedbackmultimediasystems
_version_ 1718598064648749056