Positive cocycles for minimal Zd-actions on a cantor set resulting from cut and project schemes: The octogonal tiling
We study the cut and projection method, which is a way to construct tilings. This construction leads to a minimal Zd -action on the Cantor set. In this thesis, we will focus our attention on two examples that we will describe in full details. the Fibonacci tiling on R and the octogonal tiling o...
Main Author: | |
---|---|
Format: | Others |
Language: | en |
Published: |
University of Ottawa (Canada)
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/10393/28269 http://dx.doi.org/10.20381/ruor-19168 |
Summary: | We study the cut and projection method, which is a way to construct tilings. This construction leads to a minimal Zd -action on the Cantor set. In this thesis, we will focus our attention on two examples that we will describe in full details. the Fibonacci tiling on R and the octogonal tiling on R2 . For the octogonal tiling, we find small strictly positive cocycles for the minimal action on specific cones of Z2 . |
---|