All-optical Microwave Signal Processing

Microwave signal processing in the optical domain is investigated in this thesis. Two signal processors including an all-optical fractional Hilbert transformer and an all-optical microwave differentiator are investigated and experimentally demonstrated. Specifically, the photonic-assisted fraction...

Full description

Bibliographic Details
Main Author: Han, Yichen
Other Authors: Yao, Jianping
Language:en
Published: Université d'Ottawa / University of Ottawa 2011
Subjects:
Online Access:http://hdl.handle.net/10393/20234
http://dx.doi.org/10.20381/ruor-4829
Description
Summary:Microwave signal processing in the optical domain is investigated in this thesis. Two signal processors including an all-optical fractional Hilbert transformer and an all-optical microwave differentiator are investigated and experimentally demonstrated. Specifically, the photonic-assisted fractional Hilbert transformer with tunable fractional order is implemented based on a temporal pulse shaping system incorporating a phase modulator. By applying a step function to the phase modulator to introduce a phase jump, a real-time fractional Hilbert transformer with a tunable fractional order is achieved. The microwave bandpass differentiator is implemented based on a finite impulse response (FIR) photonic microwave delay-line filter with nonuniformly-spaced taps. A microwave bandpass differentiator based on a six-tap nonuniformly-spaced photonic microwave delay-line filter with all- positive coefficients is designed, simulated, and experimentally demonstrated. The reconfigurability of the microwave bandpass differentiator is experimentally investigated. The employment of the differentiator to perform differentiation of a bandpass microwave signal is also experimentally demonstrated.