Microbial Contamination Assessment with SWAT in a Tile-Drained Rural Watershed
Microbial contamination of drinking water poses an important health risk which causes severe illnesses and epidemics. In order to improve surface and drinking water quality, the understanding of fecal pathogen contamination processes including their prevention and control needs to be enhanced. The w...
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
Université d'Ottawa / University of Ottawa
2011
|
Subjects: | |
Online Access: | http://hdl.handle.net/10393/20057 http://dx.doi.org/10.20381/ruor-4646 |
id |
ndltd-uottawa.ca-oai-ruor.uottawa.ca-10393-20057 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-uottawa.ca-oai-ruor.uottawa.ca-10393-200572018-01-05T19:00:58Z Microbial Contamination Assessment with SWAT in a Tile-Drained Rural Watershed Fall, Claudia Sawada, Michael Fecal bacteria SWAT watershed modelling Bacteria Die-Off Bacteria concentration in feces and manure Microbial contamination of drinking water poses an important health risk which causes severe illnesses and epidemics. In order to improve surface and drinking water quality, the understanding of fecal pathogen contamination processes including their prevention and control needs to be enhanced. The watershed model soil water assessment tool (SWAT) is commonly used to simulate the complex hydrological, meteorological, erosion, land management and pollution processes within river basins. In recent years, it has been increasingly applied to simulate microbial contamination transport at the watershed scale. SWAT is used in this study to simulate Escherichia coli (E.coli) and fecal coliform densities for the agriculturally dominated Payne River Basin in Ontario, Canada. Unprecedented extensive monitoring data that consist of 30 years of daily hydrological data and 5 years of bi-weekly nutrient data have been used to calibrate and validate the presented model here. The calibration and validation of the streamflow and nutrients indicate that the model represent these processes well. The model performs well for periods of lower E. coli and fecal coliform loadings. On the other hand, frequency and magnitude of higher microbial loads are not always accurately represented by the model. 2011-06-10T13:20:56Z 2011-06-10T13:20:56Z 2011 2011 Thesis http://hdl.handle.net/10393/20057 http://dx.doi.org/10.20381/ruor-4646 en Université d'Ottawa / University of Ottawa |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Fecal bacteria SWAT watershed modelling Bacteria Die-Off Bacteria concentration in feces and manure |
spellingShingle |
Fecal bacteria SWAT watershed modelling Bacteria Die-Off Bacteria concentration in feces and manure Fall, Claudia Microbial Contamination Assessment with SWAT in a Tile-Drained Rural Watershed |
description |
Microbial contamination of drinking water poses an important health risk which causes severe illnesses and epidemics. In order to improve surface and drinking water quality, the understanding of fecal pathogen contamination processes including their prevention and control needs to be enhanced. The watershed model soil water assessment tool (SWAT) is commonly used to simulate the complex hydrological, meteorological, erosion, land management and pollution processes within river basins. In recent years, it has been increasingly applied to simulate microbial contamination transport at the watershed scale. SWAT is used in this study to simulate Escherichia coli (E.coli) and fecal coliform densities for the agriculturally dominated Payne River Basin in Ontario, Canada. Unprecedented extensive monitoring data that consist of 30 years of daily hydrological data and 5 years of bi-weekly nutrient data have been used to calibrate and validate the presented model here. The calibration and validation of the streamflow and nutrients indicate that the model represent these processes well. The model performs well for periods of lower E. coli and fecal coliform loadings. On the other hand, frequency and magnitude of higher microbial loads are not always accurately represented by the model. |
author2 |
Sawada, Michael |
author_facet |
Sawada, Michael Fall, Claudia |
author |
Fall, Claudia |
author_sort |
Fall, Claudia |
title |
Microbial Contamination Assessment with SWAT in a Tile-Drained Rural Watershed |
title_short |
Microbial Contamination Assessment with SWAT in a Tile-Drained Rural Watershed |
title_full |
Microbial Contamination Assessment with SWAT in a Tile-Drained Rural Watershed |
title_fullStr |
Microbial Contamination Assessment with SWAT in a Tile-Drained Rural Watershed |
title_full_unstemmed |
Microbial Contamination Assessment with SWAT in a Tile-Drained Rural Watershed |
title_sort |
microbial contamination assessment with swat in a tile-drained rural watershed |
publisher |
Université d'Ottawa / University of Ottawa |
publishDate |
2011 |
url |
http://hdl.handle.net/10393/20057 http://dx.doi.org/10.20381/ruor-4646 |
work_keys_str_mv |
AT fallclaudia microbialcontaminationassessmentwithswatinatiledrainedruralwatershed |
_version_ |
1718597321175859200 |