The Solvent Cage Effect: Using Microviscosity to Predict the Recombination Efficiency of Geminate Radicals Formed by the Photolysis of the Mo-Mo Bond of Cpʹ2Mo2(CO)6

Radicals are core reactive species that occur in almost every subfield of chemistry. In particular, solution phase radicals find their way into biochemistry (e.g. vitamin B12), and in polymer chemistry (e.g. radical polymerizations) just to name a few. Yet, given the proliferation of radical chemi...

Full description

Bibliographic Details
Main Author: Barry, Justin
Other Authors: Pluth, Mike
Language:en_US
Published: University of Oregon 2018
Subjects:
Online Access:http://hdl.handle.net/1794/23713
id ndltd-uoregon.edu-oai-scholarsbank.uoregon.edu-1794-23713
record_format oai_dc
spelling ndltd-uoregon.edu-oai-scholarsbank.uoregon.edu-1794-237132018-12-20T05:48:42Z The Solvent Cage Effect: Using Microviscosity to Predict the Recombination Efficiency of Geminate Radicals Formed by the Photolysis of the Mo-Mo Bond of Cpʹ2Mo2(CO)6 Barry, Justin Pluth, Mike Radical Polymerizations Radical Rebound Radicals Solvent Cage Effect Solvent Effects Viscosity Effects Radicals are core reactive species that occur in almost every subfield of chemistry. In particular, solution phase radicals find their way into biochemistry (e.g. vitamin B12), and in polymer chemistry (e.g. radical polymerizations) just to name a few. Yet, given the proliferation of radical chemistry, there are still fundamental aspects of it that are poorly understood. This dissertation probed factors that influence the solvent cage effect. The solvent cage effect is where two radicals are held in close proximity to one another and prevented from easily escaping (to form free radicals) by a cage of solvent molecules. A convenient metric of the solvent cage effect is the radical recombination efficiency (FcP). Typically, FcP correlates with the bulk viscosity of the solution, however, this parameter only produces qualitative assessments. This dissertation outlines a method to quantitatively predict FcP using the microviscosity. This microviscosity dependence holds for non polar, aromatic, polar, and hydrogen-bonding solvents, along with solutions that contain polymers. Microviscosity is a great metric because it addresses an underlying reason for the solvent cage effect, the strength of the cage. Not only does the strength of the solvent cage around the radical pair affect FcP, but so does the identity of the radicals themselves. That is, the strength of the solvent cage is one piece to forming a total predictive model. FcP for the Cp'2Mo2(CO)6 dimer also varies with the wavelength of irradiation. Identifying the mechanism by which this wavelength dependence occurs may also provide another factor to include in an overall model of the solvent cage effect. Also, an attempt at synthesizing an asymmetric molybdenum dimer was performed. This asymmetric dimer would allow the study of solvent caged radical pairs that are different from each other. Predicting the photochemical cage pair recombination efficiency (FcP) is the major topic of this dissertation. However, there is also the collisional cage recombination efficiency (Fcʹ). This is where free radicals come together in what is called a collisional solvent cage pair. A method and values of Fcʹ are detailed later in this dissertation. This dissertation contains previously published and unpublished co-authored material. 2018-09-06T21:53:58Z 2018-09-06T21:53:58Z 2018-09-06 Electronic Thesis or Dissertation http://hdl.handle.net/1794/23713 en_US All Rights Reserved. University of Oregon
collection NDLTD
language en_US
sources NDLTD
topic Radical Polymerizations
Radical Rebound
Radicals
Solvent Cage Effect
Solvent Effects
Viscosity Effects
spellingShingle Radical Polymerizations
Radical Rebound
Radicals
Solvent Cage Effect
Solvent Effects
Viscosity Effects
Barry, Justin
The Solvent Cage Effect: Using Microviscosity to Predict the Recombination Efficiency of Geminate Radicals Formed by the Photolysis of the Mo-Mo Bond of Cpʹ2Mo2(CO)6
description Radicals are core reactive species that occur in almost every subfield of chemistry. In particular, solution phase radicals find their way into biochemistry (e.g. vitamin B12), and in polymer chemistry (e.g. radical polymerizations) just to name a few. Yet, given the proliferation of radical chemistry, there are still fundamental aspects of it that are poorly understood. This dissertation probed factors that influence the solvent cage effect. The solvent cage effect is where two radicals are held in close proximity to one another and prevented from easily escaping (to form free radicals) by a cage of solvent molecules. A convenient metric of the solvent cage effect is the radical recombination efficiency (FcP). Typically, FcP correlates with the bulk viscosity of the solution, however, this parameter only produces qualitative assessments. This dissertation outlines a method to quantitatively predict FcP using the microviscosity. This microviscosity dependence holds for non polar, aromatic, polar, and hydrogen-bonding solvents, along with solutions that contain polymers. Microviscosity is a great metric because it addresses an underlying reason for the solvent cage effect, the strength of the cage. Not only does the strength of the solvent cage around the radical pair affect FcP, but so does the identity of the radicals themselves. That is, the strength of the solvent cage is one piece to forming a total predictive model. FcP for the Cp'2Mo2(CO)6 dimer also varies with the wavelength of irradiation. Identifying the mechanism by which this wavelength dependence occurs may also provide another factor to include in an overall model of the solvent cage effect. Also, an attempt at synthesizing an asymmetric molybdenum dimer was performed. This asymmetric dimer would allow the study of solvent caged radical pairs that are different from each other. Predicting the photochemical cage pair recombination efficiency (FcP) is the major topic of this dissertation. However, there is also the collisional cage recombination efficiency (Fcʹ). This is where free radicals come together in what is called a collisional solvent cage pair. A method and values of Fcʹ are detailed later in this dissertation. This dissertation contains previously published and unpublished co-authored material.
author2 Pluth, Mike
author_facet Pluth, Mike
Barry, Justin
author Barry, Justin
author_sort Barry, Justin
title The Solvent Cage Effect: Using Microviscosity to Predict the Recombination Efficiency of Geminate Radicals Formed by the Photolysis of the Mo-Mo Bond of Cpʹ2Mo2(CO)6
title_short The Solvent Cage Effect: Using Microviscosity to Predict the Recombination Efficiency of Geminate Radicals Formed by the Photolysis of the Mo-Mo Bond of Cpʹ2Mo2(CO)6
title_full The Solvent Cage Effect: Using Microviscosity to Predict the Recombination Efficiency of Geminate Radicals Formed by the Photolysis of the Mo-Mo Bond of Cpʹ2Mo2(CO)6
title_fullStr The Solvent Cage Effect: Using Microviscosity to Predict the Recombination Efficiency of Geminate Radicals Formed by the Photolysis of the Mo-Mo Bond of Cpʹ2Mo2(CO)6
title_full_unstemmed The Solvent Cage Effect: Using Microviscosity to Predict the Recombination Efficiency of Geminate Radicals Formed by the Photolysis of the Mo-Mo Bond of Cpʹ2Mo2(CO)6
title_sort solvent cage effect: using microviscosity to predict the recombination efficiency of geminate radicals formed by the photolysis of the mo-mo bond of cpʹ2mo2(co)6
publisher University of Oregon
publishDate 2018
url http://hdl.handle.net/1794/23713
work_keys_str_mv AT barryjustin thesolventcageeffectusingmicroviscositytopredicttherecombinationefficiencyofgeminateradicalsformedbythephotolysisofthemomobondofcpʹ2mo2co6
AT barryjustin solventcageeffectusingmicroviscositytopredicttherecombinationefficiencyofgeminateradicalsformedbythephotolysisofthemomobondofcpʹ2mo2co6
_version_ 1718804456278065152