Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications
The major topics discussed are all relevant to interfacing brightly phosphorescent and non-luminescent coinage metal complexes of [Ag(I) and Au(I)] with biopolymers and thermoresponsive gels for making hybrid nanomaterials with an explanation on syntheses, characterization and their significance in...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
University of North Texas
2011
|
Subjects: | |
Online Access: | https://digital.library.unt.edu/ark:/67531/metadc84243/ |
id |
ndltd-unt.edu-info-ark-67531-metadc84243 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-unt.edu-info-ark-67531-metadc842432017-03-17T08:39:37Z Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications Marpu, Sreekar B. hydrogels luminescence nanoparticles The major topics discussed are all relevant to interfacing brightly phosphorescent and non-luminescent coinage metal complexes of [Ag(I) and Au(I)] with biopolymers and thermoresponsive gels for making hybrid nanomaterials with an explanation on syntheses, characterization and their significance in biomedical fields. Experimental results and ongoing work on determining outreaching consequences of these hybrid nanomaterials for various biomedical applications like cancer therapy, bio-imaging and antibacterial abilities are described. In vitro and in vivo studies have been performed on majority of the discussed hybrid nanomaterials and determined that the cytotoxicity or antibacterial activity are comparatively superior when compared to analogues in literature. Consequential differences are noticed in photoluminescence enhancement from hybrid phosphorescent hydrogels, phosphorescent complex ability to physically crosslink, Au(I) sulfides tendency to form NIR (near-infrared) absorbing AuNPs compared to any similar work in literature. Syntheses of these hybrid nanomaterials has been thoroughly investigated and it is determined that either metallic nanoparticles syntheses or syntheses of phosphorescent hydrogels can be carried in single step without involving any hazardous reducing agents or crosslinkers or stabilizers that are commonly employed during multiple step syntheses protocols for syntheses of similar materials in literature. These astounding results that have been discovered within studies of hybrid nanomaterials are an asset to applications ranging from materials development to health science and will have striking effect on environmental and green chemistry approaches. University of North Texas Hu, Zhibing Omary, Mohammad A. Reidy, Rick D'Souza, Nandika El Bounani, Mohammad 2011-08 Thesis or Dissertation Text local-cont-no: marpu_sreekar_b https://digital.library.unt.edu/ark:/67531/metadc84243/ ark: ark:/67531/metadc84243 English Public Marpu, Sreekar B. Copyright Copyright is held by the author, unless otherwise noted. All rights reserved. |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
hydrogels luminescence nanoparticles |
spellingShingle |
hydrogels luminescence nanoparticles Marpu, Sreekar B. Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications |
description |
The major topics discussed are all relevant to interfacing brightly phosphorescent and non-luminescent coinage metal complexes of [Ag(I) and Au(I)] with biopolymers and thermoresponsive gels for making hybrid nanomaterials with an explanation on syntheses, characterization and their significance in biomedical fields. Experimental results and ongoing work on determining outreaching consequences of these hybrid nanomaterials for various biomedical applications like cancer therapy, bio-imaging and antibacterial abilities are described. In vitro and in vivo studies have been performed on majority of the discussed hybrid nanomaterials and determined that the cytotoxicity or antibacterial activity are comparatively superior when compared to analogues in literature. Consequential differences are noticed in photoluminescence enhancement from hybrid phosphorescent hydrogels, phosphorescent complex ability to physically crosslink, Au(I) sulfides tendency to form NIR (near-infrared) absorbing AuNPs compared to any similar work in literature. Syntheses of these hybrid nanomaterials has been thoroughly investigated and it is determined that either metallic nanoparticles syntheses or syntheses of phosphorescent hydrogels can be carried in single step without involving any hazardous reducing agents or crosslinkers or stabilizers that are commonly employed during multiple step syntheses protocols for syntheses of similar materials in literature. These astounding results that have been discovered within studies of hybrid nanomaterials are an asset to applications ranging from materials development to health science and will have striking effect on environmental and green chemistry approaches. |
author2 |
Hu, Zhibing |
author_facet |
Hu, Zhibing Marpu, Sreekar B. |
author |
Marpu, Sreekar B. |
author_sort |
Marpu, Sreekar B. |
title |
Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications |
title_short |
Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications |
title_full |
Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications |
title_fullStr |
Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications |
title_full_unstemmed |
Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications |
title_sort |
biocompatible hybrid nanomaterials involving polymers and hydrogels interfaced with phosphorescent complexes and toxin-free metallic nanoparticles for biomedical applications |
publisher |
University of North Texas |
publishDate |
2011 |
url |
https://digital.library.unt.edu/ark:/67531/metadc84243/ |
work_keys_str_mv |
AT marpusreekarb biocompatiblehybridnanomaterialsinvolvingpolymersandhydrogelsinterfacedwithphosphorescentcomplexesandtoxinfreemetallicnanoparticlesforbiomedicalapplications |
_version_ |
1718430902286024704 |