Comparing Three Effect Sizes for Latent Class Analysis

Traditional latent class analysis (LCA) considers entropy R2 as the only measure of effect size. However, entropy may not always be reliable, a low boundary is not agreed upon, and good separation is limited to values of greater than .80. As applications of LCA grow in popularity, it is imperative t...

Full description

Bibliographic Details
Main Author: Granado, Elvalicia A.
Other Authors: Natesan, Prathiba
Format: Others
Language:English
Published: University of North Texas 2015
Subjects:
Online Access:https://digital.library.unt.edu/ark:/67531/metadc822835/
Description
Summary:Traditional latent class analysis (LCA) considers entropy R2 as the only measure of effect size. However, entropy may not always be reliable, a low boundary is not agreed upon, and good separation is limited to values of greater than .80. As applications of LCA grow in popularity, it is imperative to use additional sources to quantify LCA classification accuracy. Greater classification accuracy helps to ensure that the profile of the latent classes reflect the profile of the true underlying subgroups. This Monte Carlo study compared the quantification of classification accuracy and confidence intervals of three effect sizes, entropy R2, I-index, and Cohen’s d. Study conditions included total sample size, number of dichotomous indicators, latent class membership probabilities (γ), conditional item-response probabilities (ρ), variance ratio, sample size ratio, and distribution types for a 2-class model. Overall, entropy R2 and I-index showed the best accuracy and standard error, along with the smallest confidence interval widths. Results showed that I-index only performed well for a few cases.