Monitoring Monocyte Oxldl Phagocytosis As a Cardiovascular Disease Risk Factor Following a High-fat Meal

Macrophage-derived foam cells play a predominant role in the deposition of arterial plaques during the early stages of atherosclerosis. The deposition of arterial plaques is known to be effected by several factors, including a person’s dietary habits. The consumption of a high-fat (>60% of calori...

Full description

Bibliographic Details
Main Author: Henning, Andrea L.
Other Authors: McFarlin, Brian
Format: Others
Language:English
Published: University of North Texas 2014
Subjects:
Online Access:https://digital.library.unt.edu/ark:/67531/metadc700101/
Description
Summary:Macrophage-derived foam cells play a predominant role in the deposition of arterial plaques during the early stages of atherosclerosis. The deposition of arterial plaques is known to be effected by several factors, including a person’s dietary habits. The consumption of a high-fat (>60% of calories from fat) meal is known to elevate serum LDL and triglycerides, which have been previously implicated in the formation pf foam cells. One limitation of current research models is that it is not possible to directly measure foam cells in vivo. Thus, the purpose of the present study was to validate the use of blood derived monocytes as a proxy measure of foam cells. In order to complete this objective, we evaluated monocyte oxLDL phagocytosis capacity following consumption of a high-fat meal. Eight men and women participated in the present study and venous blood samples were collected prior to the meal, 1-h, 3-h, and 5-h post-meal. Monocytes (CD14+/16- and CD14+/16+) were evaluated for adhesion molecule expression (CD11a, CD11b, and CD18), scavenger R (CD36) expression, and oxLDL phagocytosis using an image-based flow cytometry method developed in our laboratory for this purpose. Data was statistically analyzed for significance using a single-factor ANOVA with repeated measures and a p < 0.05. Consumption of a high-fat meal caused an increase significant increase in the proportion of pro-inflammatory monocytes (CD14+/16+) and a decrease in classic monocytes (CD14+/16-), with the greatest difference occurring at 5 h post prandial (p = 0.038). We also found that pro-inflammatory monocyte expression of adhesion molecules and CD36 increased in a manner that would promote in vivo movement of monocytes into the subendothelial space. Finally, over the course of the 5 h postprandial period, the majority of oxLDL uptake occurred in pro-inflammatory compared to classic monocytes. These results suggest that consuming a high-fat meal increases the potential of monocytes to become foam cells for at least 5 h postprandial.