Summary: | This dissertation deals with two major topics that involve spectroscopic studies of (a) divalent group 10 metals and (b) silver(I)-phosphine complexes. The scope of the work involved the delineation of the electronic structure of these complexes in different environments and their use in electronic devices. The first topic is a look at the luminescence of tetrahedral silver(I)-phosphine complexes. Broad unstructured emissions with large Stokes shifts were found for these complexes. Computational analysis of the singlet and triplet state geometries suggests that this emission is due to a Jahn-Teller type distortion. The second topic represents the major thrust of this research, which is an investigation into the electronic structure of M(diimine)X2 (M= Pt(II), Pd(II), or Ni(II); X = dichloro, or dithiolate ligands) complexes and their interactions with an electron acceptor or Lewis acid. Chapter 3 assesses the use of some of these complexes in dye sensitized solar cells (DSSCs); it is shown that these complexes may lead to a viable alternative to the more expensive ruthenium-based dyes that are being implemented now. Chapter 4 is an investigation into donor/acceptor pairs involving this class of complexes, which serves as a feasibility test for the use of these complexes in organic photo-voltaics (OPVs) and thin-film field-effect transistors (OTFTs). The mixing of a donor Pt molecule with an electron deficient nitrofluorenone gives rise to new absorption bands in the NIR region. Computational studies of one of the solids suggest that these complexes may have metallic behavior. Chapter 5 demonstrates association in solution, previously unobserved, for Pt(diimine)Cl2 complexes. This chapter is an investigation into the effects of the association mode for this class of complexes on the absorption and emission properties. One of the complexes was used as the emitter in organic light emitting diodes (OLEDs). The results of this study show that these complexes have tunable absorption and emission energies that are concentration dependant. The concentration dependence of the absorption and emission energies is utilized in the OLED device where association enhances the performance.
|