A New Method for Measuring the Nuclear Hexadecapole Interaction in Some Solids

A new method for measuring the nuclear hexadecapole interaction (HDI) in solids based on NMR quadrupole echoes is described. Theoretical values of the shifts of the quadrupole echo times caused by the HDI are given for two pulse and three pulse echoes in a nuclear spin 5/2 system. The method is appl...

Full description

Bibliographic Details
Main Author: Ni, QingWen
Format: Others
Language:English
Published: University of North Texas 1991
Subjects:
Online Access:https://digital.library.unt.edu/ark:/67531/metadc332505/
Description
Summary:A new method for measuring the nuclear hexadecapole interaction (HDI) in solids based on NMR quadrupole echoes is described. Theoretical values of the shifts of the quadrupole echo times caused by the HDI are given for two pulse and three pulse echoes in a nuclear spin 5/2 system. The method is applied to 1271 in an almost strain free crystal of KI and a hexadecapole coupling frequency (e2M16m16/h) of 630 Hz was found. Here e is the electronic charge, em16 is the fourth gradient of the external electric potential at the nuclear site, eM16 is the hexadecapole moment and h is the Planck constant. This HDI is smaller than previously measured values in solids (42.6 MHz for 1 81 Ta in TaF 5, 66.6 MHz for 175Lu in Lu(NO3 )3*4H 20), but not as small as an atomic beam result of 151 Hz for 165Ho in atomic Ho. The method described here may be used to search for the HDI in other cubic crystals. A double resonance (1151n, 31P) multiple pulse method was unsuccessfully used to search for the 1151n HDI in a single crystal of InP.