Investigation of the Effect of Functional Units/Connectivity Arrangement on Energy Consumption of Reconfigurable Architectures Using an Interactive Design Framework

Allocation of expensive resources, (such as Multiplier) onto the CGRA has been of interest from quite some time. For these architectural solutions to fulfill the designers' requirements, it is of utmost importance that the design offers high performance, low power consumption, and effective are...

Full description

Bibliographic Details
Main Author: Bhargava, Arpita
Other Authors: Mehta, Gayatri
Format: Others
Language:English
Published: University of North Texas 2017
Subjects:
Online Access:https://digital.library.unt.edu/ark:/67531/metadc1011763/
Description
Summary:Allocation of expensive resources, (such as Multiplier) onto the CGRA has been of interest from quite some time. For these architectural solutions to fulfill the designers' requirements, it is of utmost importance that the design offers high performance, low power consumption, and effective area utilization. The allocation problem is studied using the UntangledII gaming environment, which has been developed at the Reconfigurable Computing Lab at UNT to discover the design of custom domain-specific architectures. This thesis explores several case-studies to investigate the arrangement of functional units and interconnects to achieve a low power, high performance, and flexible heterogeneous designs that can fit for a suite of applications. In the later part, several human mapping strategies of top and bottom players to design a custom domain-specific architecture are presented. Some common trends that were examined while analyzing the mapping strategies of the players are also discussed.