Numerical study of ignition and inter-sector flame propagation in gas turbine

For safety reasons, in-flight relight of the engine must be guaranteed over a wide range of operating conditions but the increasing stringency of pollutant emission constraints requires the development of new aero-engine combustor whose design might be detrimental to the ignition capability. To impr...

Full description

Bibliographic Details
Main Author: Esclapez, Lucas
Format: Others
Published: 2015
Online Access:http://oatao.univ-toulouse.fr/15655/2/Esclapez_1.pdf
http://oatao.univ-toulouse.fr/15655/3/Esclapez_2.pdf
http://oatao.univ-toulouse.fr/15655/7/Esclapez_3.pdf
id ndltd-univ-toulouse.fr-oai-oatao.univ-toulouse.fr-15655
record_format oai_dc
spelling ndltd-univ-toulouse.fr-oai-oatao.univ-toulouse.fr-156552017-10-11T05:10:10Z Numerical study of ignition and inter-sector flame propagation in gas turbine Esclapez, Lucas For safety reasons, in-flight relight of the engine must be guaranteed over a wide range of operating conditions but the increasing stringency of pollutant emission constraints requires the development of new aero-engine combustor whose design might be detrimental to the ignition capability. To improve the knowledge of the ignition process in aeronautical gas turbines and better combine conflicting technological solutions, current research relies on both complex experimental investigation and high fidelity numerical simulations. In this work, numerical study of the ignition process in gas turbines from the energy deposit to the light-around is performed with several objectives: increase the level of confidence of Large Eddy Simulations tool for the analysis of the ignition process, investigate the mechanisms controlling ignition in conditions representative of realistic aeronautical gas turbine flows and improve the low-order methodologies for the prediction of ignition performance. In a first part, LES of the single burner installed at CORIA (France) is carried out and allows to highlight the LES accuracy and to build a database on which the main mechanisms controlling the ignition success are identified. Based on these results, a methodology is developed to predict the ignition performance at a low computational cost using the non-reacting flow statistics only. In a second part, the light-around process is studied on two experimental set-ups and the very good agreement of the LES results with experiments is the starting point from an analysis of the mechanisms driving the flame propagation process. 2015-05-22 PhD Thesis PeerReviewed application/pdf http://oatao.univ-toulouse.fr/15655/2/Esclapez_1.pdf application/pdf http://oatao.univ-toulouse.fr/15655/3/Esclapez_2.pdf application/pdf http://oatao.univ-toulouse.fr/15655/7/Esclapez_3.pdf info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/openAccess Esclapez, Lucas. Numerical study of ignition and inter-sector flame propagation in gas turbine. PhD, Energétique et Transferts, Institut National Polytechnique de Toulouse, 2015 http://oatao.univ-toulouse.fr/15655/
collection NDLTD
format Others
sources NDLTD
description For safety reasons, in-flight relight of the engine must be guaranteed over a wide range of operating conditions but the increasing stringency of pollutant emission constraints requires the development of new aero-engine combustor whose design might be detrimental to the ignition capability. To improve the knowledge of the ignition process in aeronautical gas turbines and better combine conflicting technological solutions, current research relies on both complex experimental investigation and high fidelity numerical simulations. In this work, numerical study of the ignition process in gas turbines from the energy deposit to the light-around is performed with several objectives: increase the level of confidence of Large Eddy Simulations tool for the analysis of the ignition process, investigate the mechanisms controlling ignition in conditions representative of realistic aeronautical gas turbine flows and improve the low-order methodologies for the prediction of ignition performance. In a first part, LES of the single burner installed at CORIA (France) is carried out and allows to highlight the LES accuracy and to build a database on which the main mechanisms controlling the ignition success are identified. Based on these results, a methodology is developed to predict the ignition performance at a low computational cost using the non-reacting flow statistics only. In a second part, the light-around process is studied on two experimental set-ups and the very good agreement of the LES results with experiments is the starting point from an analysis of the mechanisms driving the flame propagation process.
author Esclapez, Lucas
spellingShingle Esclapez, Lucas
Numerical study of ignition and inter-sector flame propagation in gas turbine
author_facet Esclapez, Lucas
author_sort Esclapez, Lucas
title Numerical study of ignition and inter-sector flame propagation in gas turbine
title_short Numerical study of ignition and inter-sector flame propagation in gas turbine
title_full Numerical study of ignition and inter-sector flame propagation in gas turbine
title_fullStr Numerical study of ignition and inter-sector flame propagation in gas turbine
title_full_unstemmed Numerical study of ignition and inter-sector flame propagation in gas turbine
title_sort numerical study of ignition and inter-sector flame propagation in gas turbine
publishDate 2015
url http://oatao.univ-toulouse.fr/15655/2/Esclapez_1.pdf
http://oatao.univ-toulouse.fr/15655/3/Esclapez_2.pdf
http://oatao.univ-toulouse.fr/15655/7/Esclapez_3.pdf
work_keys_str_mv AT esclapezlucas numericalstudyofignitionandintersectorflamepropagationingasturbine
_version_ 1718553317243617280