Assimilation de données ensembliste et couplage de modèles hydrauliques 1D-2D pour la prévision des crues en temps réel. Application au réseau hydraulique "Adour maritime"

Les inondations sont un risque naturel majeur pour les biens et les personnes. Prévoir celles-ci, informer le grand public et les autorités sont de la responsabilité des services de prévision des crues. Pour ce faire ils disposent d'observations in situ et de modèles numériques. Néanmoins les m...

Full description

Bibliographic Details
Main Author: Barthélémy, Sébastien
Format: Others
Published: 2015
Online Access:http://oatao.univ-toulouse.fr/14279/1/barthelemy.pdf
Description
Summary:Les inondations sont un risque naturel majeur pour les biens et les personnes. Prévoir celles-ci, informer le grand public et les autorités sont de la responsabilité des services de prévision des crues. Pour ce faire ils disposent d'observations in situ et de modèles numériques. Néanmoins les modèles numériques sont une représentation simplifiée et donc entachée d'erreur de la réalité. Les observations quant à elle fournissent une information localisée et peuvent être également entachées d'erreur. Les méthodes d'assimilation de données consistent à combiner ces deux sources d'information et sont utilisées pour réduire l'incertitude sur la description de l'état hydraulique des cours d'eau et améliorer les prévisisons. Ces dernières décennies l'assimilation de données a été appliquée avec succès à l'hydraulique fluviale pour l'amélioration des modèles et pour la prévision des crues. Cependant le développement de méthodes d'assimilation pour la prévision en temps réel est contraint par le temps de calcul disponible et par la conception de la chaîne opérationnelle. Les méthodes en question doivent donc être performantes, simples à implémenter et peu coûteuses. Un autre défi réside dans la combinaison des modèles hydrauliques de dimensions différentes développés pour décrire les réseaux hydrauliques. Un modèle 1D est peu coûteux mais ne permet pas de décrire des écoulement complexes, contrairement à un modèle 2D. Le simple chainage des modèles 1D et 2D avec échange des conditions aux limites n'assure pas la continuité de l'état hydraulique. Il convient alors de coupler les modèles, tout en limitant le coût de calcul. Cette thèse a été financée par la région Midi-Pyrénées et le SCHAPI (Service Central d'Hydrométéorolgie et d'Appui à la Prévisions des Inondations) et a pour objectif d'étudier l'apport de l'assimilation de données et du couplage de modèles pour la prévision des crues. Elle se décompose en deux axes : Un axe sur l'assimilation de données. On s'intéresse à l'émulation du filtre de Kalman d'Ensemble (EnKF) sur le modèle d'onde de crue. On montre, sous certaines hypothèses, qu'on peut émuler l'EnKF avec un filtre de Kalman invariant pour un coût de calcul réduit. Dans un second temps nous nous intéressons à l'application de l'EnKF sur l'Adour maritime avec un modèle Saint-Venant. Nous en montrons les limitations dans sa version classique et montrons les avantages apportés par des méthodes complémentaires d'inflation et d'estimation des covariances d'erreur d'observation. L'apport de l'assimilation des données in situ de hauteurs d'eau sur des cas synthétiques et sur des crues réelles a été démontré et permet une correction spatialisée des hauteurs d'eau et des débits. En conséquence, on constate que les prévisions à court terme sont améliorées. Nous montrons enfin qu'un système de prévisions probabilistes sur l'Adour dépend de la connaissance que l'on a des forçages amonts ; un axe sur le couplage de modèles hydrauliques. Sur l'Adour 2 modèles co-existent : un modèle 1D et un modèle 2D au niveau de Bayonne. Deux méthodes de couplage ont été implémentées. Une première méthode, dite de "couplage à interfaces", combine le 1D décomposé en sous-modèles couplés au 2D au niveau frontières liquides de ce dernier. Une deuxième méthode superpose le 1D avec le 2D sur la zone de recouvrement ; le 1D force le 2D qui, quand il est en crue, calcule les termes d'apports latéraux pour le 1D, modélisant les échanges entre lit mineur et lit majeur. Le coût de calcul de la méthode par interfaces est significativement plus élevé que celui associé à la méthode de couplage par superposition, mais assure une meilleure continuité des variables. En revanche, la méthode de superposition est immédiatement compatible avec l'approche d'assimilation de données sur la zone 1D. L'apport, sur la zone 2D, de l'assimilation des observations in situ des hauteurs d'eau sur la zone 1D a été mis en évidence pour un fort événement de crue de la Nive en Janvier 2014.