A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics
This PhD thesis concerns the development of flexible Krylov subspace iterative solvers for the solution of large sparse linear systems of equations with multiple right-hand sides. Our target application is the solution of the acoustic full waveform inversion problem in geophysics associated with the...
Main Author: | |
---|---|
Format: | Others |
Published: |
2013
|
Online Access: | http://oatao.univ-toulouse.fr/10055/1/Ferreira.pdf |
Summary: | This PhD thesis concerns the development of flexible Krylov subspace iterative solvers for the solution of large sparse linear systems of equations with multiple right-hand sides. Our target application is the solution of the acoustic full waveform inversion problem in geophysics associated with the phenomena of wave propagation through an heterogeneous model simulating the subsurface of Earth. When multiple wave sources are being used, this problem gives raise to large sparse complex non-Hermitian and nonsymmetric linear systems with thousands of right-hand sides. Specially in the three-dimensional case and at high frequencies, this problem is known to be difficult. The purpose of this thesis is to develop a flexible block Krylov iterative method which extends and improves techniques already available in the current literature to the multiple right-hand sides scenario. We exploit the relations between each right-hand side to accelerate the convergence of the overall iterative method. We study both block deflation and single right-hand side subspace recycling techniques obtaining substantial gains in terms of computational time when compared to other strategies published in the literature, on realistic applications performed in a parallel environment. |
---|