Arbitrary Waveform Multilevel Generator for High Voltage High Frequency Plasma Actuators
This dissertation presents the theory and the conducted activity that lead to the construction of a high voltage high frequency arbitrary waveform voltage generator. The generator has been specifically designed to supply power to a wide range of plasma actuators. The system has been completely des...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | en |
Published: |
Alma Mater Studiorum - Università di Bologna
2014
|
Subjects: | |
Online Access: | http://amsdottorato.unibo.it/6249/ |
id |
ndltd-unibo.it-oai-amsdottorato.cib.unibo.it-6249 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-unibo.it-oai-amsdottorato.cib.unibo.it-62492015-02-25T04:50:56Z Arbitrary Waveform Multilevel Generator for High Voltage High Frequency Plasma Actuators Dragonas, Filopimin Andreas <1983> ING-IND/31 Elettrotecnica This dissertation presents the theory and the conducted activity that lead to the construction of a high voltage high frequency arbitrary waveform voltage generator. The generator has been specifically designed to supply power to a wide range of plasma actuators. The system has been completely designed, manufactured and tested at the Department of Electrical, Electronic and Information Engineering of the University of Bologna. The generator structure is based on the single phase cascaded H-bridge multilevel topology and is comprised of 24 elementary units that are series connected in order to form the typical staircase output voltage waveform of a multilevel converter. The total number of voltage levels that can be produced by the generator is 49. Each level is 600 V making the output peak-to-peak voltage equal to 28.8 kV. The large number of levels provides high resolution with respect to the output voltage having thus the possibility to generate arbitrary waveforms. Maximum frequency of operation is 20 kHz. A study of the relevant literature shows that this is the first time that a cascaded multilevel converter of such dimensions has been constructed. Isolation and control challenges had to be solved for the realization of the system. The biggest problem of the current technology in power supplies for plasma actuators is load matching. Resonant converters are the most used power supplies and are seriously affected by this problem. The manufactured generator completely solves this issue providing consistent voltage output independently of the connected load. This fact is very important when executing tests and during the comparison of the results because all measures should be comparable and not dependent from matching issues. The use of the multilevel converter for power supplying a plasma actuator is a real technological breakthrough that has provided and will continue to provide very significant experimental results. Alma Mater Studiorum - Università di Bologna Grandi, Gabriele 2014-03-10 Doctoral Thesis PeerReviewed application/pdf en http://amsdottorato.unibo.it/6249/ info:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
en |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
ING-IND/31 Elettrotecnica |
spellingShingle |
ING-IND/31 Elettrotecnica Dragonas, Filopimin Andreas <1983> Arbitrary Waveform Multilevel Generator for High Voltage High Frequency Plasma Actuators |
description |
This dissertation presents the theory and the conducted activity that lead to the construction of a high voltage
high frequency arbitrary waveform voltage generator. The
generator has been specifically designed to supply power to a wide range of plasma actuators. The system has been completely designed, manufactured and tested at the Department of Electrical, Electronic and Information Engineering of the University of Bologna. The generator structure is based on the single phase cascaded H-bridge multilevel topology and is comprised of 24 elementary units that are series connected in order to form the typical staircase output voltage waveform of a multilevel converter. The total number of voltage levels that can be produced by the generator is 49. Each level is 600 V making the output peak-to-peak voltage equal to 28.8 kV. The large number
of levels provides high resolution with respect to the output voltage having thus the possibility to generate arbitrary waveforms. Maximum frequency of operation is 20 kHz. A study of the relevant literature shows that this is the first time that a cascaded multilevel converter of such
dimensions has been constructed. Isolation and control
challenges had to be solved for the realization of the system. The biggest problem of the current technology in
power supplies for plasma actuators is load matching. Resonant converters are the most used power supplies and are seriously affected by this problem. The manufactured generator completely solves this issue providing consistent voltage output independently of the connected load. This fact is very important when executing tests and during the comparison of the results because all measures should be comparable and not dependent from matching issues.
The use of the multilevel converter for power supplying a plasma actuator is a real technological breakthrough
that has provided and will continue to provide very significant experimental results. |
author2 |
Grandi, Gabriele |
author_facet |
Grandi, Gabriele Dragonas, Filopimin Andreas <1983> |
author |
Dragonas, Filopimin Andreas <1983> |
author_sort |
Dragonas, Filopimin Andreas <1983> |
title |
Arbitrary Waveform Multilevel Generator for High Voltage High Frequency Plasma Actuators |
title_short |
Arbitrary Waveform Multilevel Generator for High Voltage High Frequency Plasma Actuators |
title_full |
Arbitrary Waveform Multilevel Generator for High Voltage High Frequency Plasma Actuators |
title_fullStr |
Arbitrary Waveform Multilevel Generator for High Voltage High Frequency Plasma Actuators |
title_full_unstemmed |
Arbitrary Waveform Multilevel Generator for High Voltage High Frequency Plasma Actuators |
title_sort |
arbitrary waveform multilevel generator for high voltage high frequency plasma actuators |
publisher |
Alma Mater Studiorum - Università di Bologna |
publishDate |
2014 |
url |
http://amsdottorato.unibo.it/6249/ |
work_keys_str_mv |
AT dragonasfilopiminandreas1983 arbitrarywaveformmultilevelgeneratorforhighvoltagehighfrequencyplasmaactuators |
_version_ |
1716731331192291328 |