Parallel modeling of the electric field distribution in the brain
The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral Thesis |
Language: | en |
Published: |
Alma Mater Studiorum - Università di Bologna
2011
|
Subjects: | |
Online Access: | http://amsdottorato.unibo.it/3618/ |
id |
ndltd-unibo.it-oai-amsdottorato.cib.unibo.it-3618 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-unibo.it-oai-amsdottorato.cib.unibo.it-36182014-03-24T16:29:14Z Parallel modeling of the electric field distribution in the brain De Marco, Tommaso <1980> ING-INF/01 Elettronica The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models. Alma Mater Studiorum - Università di Bologna Guerrieri, Roberto 2011-05-06 Doctoral Thesis PeerReviewed application/pdf en http://amsdottorato.unibo.it/3618/ info:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
en |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
ING-INF/01 Elettronica |
spellingShingle |
ING-INF/01 Elettronica De Marco, Tommaso <1980> Parallel modeling of the electric field distribution in the brain |
description |
The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity.
In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field
distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility,
which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI).
This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models. |
author2 |
Guerrieri, Roberto |
author_facet |
Guerrieri, Roberto De Marco, Tommaso <1980> |
author |
De Marco, Tommaso <1980> |
author_sort |
De Marco, Tommaso <1980> |
title |
Parallel modeling of the electric field distribution in the brain |
title_short |
Parallel modeling of the electric field distribution in the brain |
title_full |
Parallel modeling of the electric field distribution in the brain |
title_fullStr |
Parallel modeling of the electric field distribution in the brain |
title_full_unstemmed |
Parallel modeling of the electric field distribution in the brain |
title_sort |
parallel modeling of the electric field distribution in the brain |
publisher |
Alma Mater Studiorum - Università di Bologna |
publishDate |
2011 |
url |
http://amsdottorato.unibo.it/3618/ |
work_keys_str_mv |
AT demarcotommaso1980 parallelmodelingoftheelectricfielddistributioninthebrain |
_version_ |
1716654366625103872 |