Evolution of Vγ9Vδ2 T-cells

Human Vγ9Vδ2 T cells are the major subset of blood γδ T cells and account for 1-5% of blood T cells. Pyrophosphorylated metabolites of isoprenoid biosynthesis are recognized by human Vγ9Vδ2 T cells and are called as phosphoantigens (PAg). Isopentenyl pyrophosphate (IPP) and (E)-4-Hydroxy-3-methyl-bu...

Full description

Bibliographic Details
Main Author: Karunakaran, Mohindar Murugesh
Format: Doctoral Thesis
Language:English
Published: 2014
Subjects:
Online Access:https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/9987
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99871
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-99871
https://opus.bibliothek.uni-wuerzburg.de/files/9987/MMKarunakaran_Doctoral_Thesis.pdf
id ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-9987
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Evolution
T-Lymphozyt
Chromosom 6
ddc:5
ddc:570
spellingShingle Evolution
T-Lymphozyt
Chromosom 6
ddc:5
ddc:570
Karunakaran, Mohindar Murugesh
Evolution of Vγ9Vδ2 T-cells
description Human Vγ9Vδ2 T cells are the major subset of blood γδ T cells and account for 1-5% of blood T cells. Pyrophosphorylated metabolites of isoprenoid biosynthesis are recognized by human Vγ9Vδ2 T cells and are called as phosphoantigens (PAg). Isopentenyl pyrophosphate (IPP) and (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) are among the few well studied PAg. IPP is found in all organisms while HMBPP is a precursor of IPP found only in eubacteria, plants and apicomplexaen parasite. Interestingly, the PAg reactive Vγ9Vδ2 T cells are so far identified only in human and higher primates but not in rodents. Hence, Vγ9Vδ2 T cells are believed to be restricted to primates. With regard to PAg recognition, a Vγ9JP recombined TCRγ chain and certain CDR3 motifs of the TCR chain are mandatory. The BTN3A1 molecule is essential for a response to PAg. BTN3 is a trans-membrane protein belonging to butyrophilin family of proteins. Though BTN3A1 was found to be essential for PAg presentation, the exact molecular basis of PAg presentation still remains unclear. This thesis presents new data on the evolution of Vγ9Vδ2 TCR and its ligands (BTN3) as well as the genetic basis of PAg presentation to Vγ9Vδ2 TCR. The comprehensive analysis of genomic database sequences at NCBI and other public domain databases revealed for the first time that Vγ9, Vδ2 and BTN3 genes emerged and co-evolved along with the placental mammals. Vγ9, Vδ2 and BTN3 genes are scattered across mammalian species and not restricted to primates. But interestingly, all three genes are highly conserved between phylogenetically distinct species. Moreover, the distribution pattern of Vγ9, Vδ2 TCR genes and BTN3 genes suggests a functional association between these genes representing the TCR - ligand relationship. Alpaca (Vicugna pacos), a member of the camelid family, is one among the 6 candidate non-primate species which were found to possess functional Vγ9, Vδ2 and BTN3 genes. From peripheral lymphocytes of alpaca, Vγ9 chain transcripts with a characteristic JP rearrangement and transcripts of Vδ2 chains with a CDR3 typical for PAg-reactive TCR were identified. The transduction of αβ TCR negative mouse thymoma BW cells with alpaca Vγ9 and Vδ2 TCR chains resulted in surface expression of the TCR complex as it was deduced from detection of cell surface expression of mouse CD3. Cross-linking of alpaca Vγ9Vδ2 TCR transductants with anti-CD3ε led to IL-2 production which confirmed that alpaca Vγ9 and Vδ2 TCR chains pair to form a functional TCR. Besides the conservation of human like Vγ9 and Vδ2 TCR chains, alpaca has conserved an orthologue for human BTN33A1 as well. Interestingly, the predicted PAg binding sites of human BTN3A1 was 100% conserved in deduced amino acid sequence of alpaca BTN3A1. All together alpaca is a promising candidate for further studies as it might have preserved Vγ9Vδ2 T cells to function in surveillance of stress and infections. This thesis also provides the sequence of Vγ9Vδ2 TCR of African green monkey (Chlorocebus aethiops), which was previously unknown. Moreover, our data indicates the lack of any species specific barrier which could hinder the PAg presentation by African monkey derived COS cells to human Vγ9Vδ2 TCR and vice versa of human cells to African green monkey Vγ9Vδ2 TCR which was in contradiction to previously reported findings. Apart from the above, the thesis also presents new data on the genetic basis of PAg presentation to Vγ9Vδ2 T cells, which revealed that human chromosome 6 is sufficient for the presentation of exogenous and endogenous PAg. By employing human/mouse somatic hybrids, we identified the role of human chromosome 6 in PAg presentation and in addition, we observed the lack of capacity of human chromosome 6 positive hybrids to activate Vγ9Vδ2 TCR transductants in the presence of the alkylamine sec-butylamine (SBA). Investigation of Chinese hamster ovary (CHO) cells containing the human chromosome 6 also yielded similar results. This suggests that aminobisphosphonates (zoledronate) and alkylamines employ different mechanisms for activation of Vγ9Vδ2 T cells although both have been described to act by inhibition of farnesyl pyrophosphate synthase activity which is known to increase intracellular levels of the IPP. In conclusion, this thesis suggests that Vγ9, Vδ2 and BTN3 genes controlling Vγ9Vδ2 TCR- ligand relationship emerged and co-evolved along with placental mammals; and also identified candidate non-primate species which could possess Vγ9Vδ2 T cells. Furthermore, it suggests alpaca as a promising non-primate species to investigate the physiological function of Vγ9Vδ2 T cells. With respect to PAg antigen presentation it was shown that chromosome 6 is essential and sufficient for exogenous and endogenous PAg presentation. Moreover, the alkylamine SBA and aminobisphosphonate zoledronate may engage different cellular mechanism to exert inhibition over IPP consumption. The thesis raises interesting questions which need to be addressed in future: 1) What are the environmental and evolutionary factors involved in preservation of Vγ9Vδ2 T cells only by few species? 2) What could be the functional nature and antigen recognition properties of such a conserved T cell subset? 3) What is the genetic and molecular basis of the differential capacity of human chromosome 6 bearing rodent-human hybridoma cells in activating Vγ9Vδ2 T cells in presence of SBA and aminobisphosphonates? === Vγ9Vδ2 T Zellen stellen im Menschen die größte Population an γδ T Zellen im Blut dar. Ihr Anteil an den Blut-T Zellen beträgt 1-5%. Humane Vγ9Vδ2 T Zellen erkennen als Phosphoantigene (PAg) bezeichnete pyrophosphorylierte Metabolite der Isoprenoidbiosynthese wobei Isopentenylpyrophosphat (IPP) und (E)-4-Hydroxy-3-methyl-but-2-enylpyrophosphat (HMBPP) zu den wenigen gut erforschten PAg gehören. IPP ist in allen Organismen zu finden während HMBPP ein IPP Vorläufer ist, der nur in Eubakterien, Pflanzen und Apikomplexa vorkommt. Interessanterweise wurden PAg-reaktive Vγ9Vδ2 T Zellen bisher nur im Menschen und höheren Primaten gefunden, aber nicht in Nagern. Daher wurde angenommen, dass Vγ9Vδ2 T Zellen eine exklusiv in Primaten vorkommende Population darstellt. Hinsichtlich der PAg-Bindung sind TCR  Ketten mit einer Rekombination von Vγ9 und JP zwingend notwendig und bestimmte CDR3 Motive der V2 TCR Kette, wobei die Erkennung der PAg von der Präsenz des BTN3A1 Moleküls abhängt. BTN3 ist ein Transmembranprotein und gehört zur Butyrophilinfamilie. Obwohl gezeigt wurde, das BTN3A für die PAg-Präsentierung unerlässlich ist, ist deren molekularer Mechanismus noch immer unklar. Die vorgelegte Arbeit beinhaltet sowohl neue Daten über die Evolution des Vγ9Vδ2 TCR und dessen Liganden (BTN3), als auch über die genetischen Grundlagen der PAg-Präsentierung. Eine umfassende Analyse genomischer Datenbanksequenzen des NCBI sowie anderer öffentlicher Datenbanken zeigte erstmals, dass Vγ9, Vδ2 und BTN3 Gene zusammen mit den höheren Säugetieren (Placentalia) entstanden und sich gemeinsam weiter entwickelten. Vγ9, Vδ2 und BTN3 Gene existieren über die gesamten Placentalia verteilt und nicht allein in Primaten. Erstaunlicherweise sind alle drei Gene auch zwischen phylogenetisch unterschiedlichen Spezies hoch konserviert und das Verteilungsmuster von Vγ9, Vδ2 und BTN3 Genen lässt auf eine funktionale Verbindung dieser Gene schliessen, wie sie die TCR/Ligand Interaktion darstellt. Weitergehende Analysen resultierten in der Identifizierung von sechs möglichen Kandidatenspezies, die nicht zu den Primaten gehören und funktionelle Vγ9, Vδ2 und BTN3 Gene besitzen. Hierzu gehört auch das Alpaka (Vicugna pacos), ein Mitglied der Famile der Kamele. Aus periphären Alpakalymphozyten wurden TCR-γ-Kettentranskripte mit charakteristischem Vγ9JP Rearrangement sowie TCR-δ-Kettentranskripte mit für PAg-reaktive Zellen typischen CDR3 amplifiziert. Die Transduktion der Alpaka-Vγ9 und Vδ2 Ketten in die TCR-negativen Maus T-Zell Hybridomlinie BW resultierte in einer Oberflächenexpression des TCR Komplex wie aus der Zelloberflächenexpression von Maus CD3 geschlossen werde konnte. Die Aktivierung dieses TCR Komplexes mittels anti-CD3ε Antikörpern führte zur Produktion von IL-2 durch die TCR-Transduktante, was die funktionelle Paarung der Alpaka Vγ9 und Vδ2 TCR-Ketten bestätigte. Neben den Vγ9 und Vδ2 TCR-Kettengenen existiert im Alpakagenom ebenso ein konserviertes Ortholog des humanen BTN3. Interessanterweise sind die mutmaßlichen PAg-Bindungsstellen des humanen BTN3A1 in dessen abgeleiteter Aminosäuresequenz zu 100% konserviert. Diese Daten machen das Alpaka zu einen vielversprechenden Kandidaten für weitere Untersuchungen, da hier möglicherweise die Population der Vγ9Vδ2 Zellen in ihrer Funktion zur Überwachung von Stress und Infektionen erhalten geblieben ist. Ebenso liefert diese Arbeit die Sequenz des Vγ9Vδ2 TCR der Grünen Meerkatze (Chlorocebus aethiops), welche zuvor nicht bekannt war. Darüber hinaus wurde keine Speziesspezifität in der Präsentierung von PAg durch COS Zellen der Grünen Meerkatze für den humanen Vγ9Vδ2 TCR oder umgekehrt der Präsentierung von PAg durch Meerkatzenzellen für humane Vγ9Vδ2 TCRs gefunden, was im im Widerspruch zu bisher veröffentlichten Ergebnissen steht. Zudem liefert diese Arbeit auch neue Ergebnisse zur genetischen Grundlage der PAg- Präsentierung für die Vγ9Vδ2 T Zellen. Hier zeigte sich, dass das humane Chromosom 6 für die Präsentierung exogener sowie endogener PAg ausreicht. Durch die Generierung somatischer Mensch/Maus Hybride konnten wir die Rolle des humanen Chromosom 6 in der Phosphoantigenpräsentierung ermitteln und zudem beobachten, dass Chromosom 6 positive Hybride nicht in der Lage waren, Vγ9Vδ2 TCR Transduktanten in Anwesenheit des Alkylamins sec-Butylamin (SBA) zu aktivieren. Desweiteren brachten Versuche mit Ovarialzellen des chinesischen Hamsters (CHO), die das humane Chromosom 6 enthielten, ähnliche Ergebnisse. Dies legt nahe, dass Aminobisphosphonate (Zoledronat) und Alkylamine unterschiedliche Mechanismen der Aktivierung von Vγ9Vδ2 T Zellen nutzen obwohl für beide beschrieben ist, dass sie durch Inhibition der Farnesylpyrophosphatsynthase wirken, die wiederum zum Anstieg des intrazellulären IPP-Spiegels führt. Zusammengefasst legt diese Arbeit die Co-Evolution der die Vγ9Vδ2 TCR/Ligand Interaktion kontrollierenden Vγ9, Vδ2 und BTN3 Gene in Placentalia nahe und identifiziert nicht den Primaten zugehörige Spezies als Kandidaten, die Vγ9Vδ2T Zellen besitzen könnten, von denen das Alpaka als vielversprechend für die Untersuchung der physiologischen Rolle von Vγ9Vδ2 T Zellen vorgeschlagen wird. Hinsichtlich der PAg-Präsentierung bestätigen die vorliegenden Ergebnisse, dass das humane Chromosom 6 zugleich nötig und ausreichend ist, endogene sowie exogene PAg zu präsentieren. Zudem könnten das Alkylamin SBA und Aminobiosphonat Zoledronat verschiedene Mechanismen zur Inhibierung des IPP Verbrauchs nutzen. Diese Ergebnisse werfen einige Fragen auf, die es in Zukunft zu beantworten gilt: 1) Was sind die Umwelt- und Evolutionsfaktoren, die dazu geführt haben, dass Vγ9Vδ2 T Zellen nur in wenigen Spezies erhalten blieben? 2) Was könnte die funktionale Natur und die Antigenbindungseigenschaften einer solchen konservierten T Zell Population sein? 3) Was ist die genetische und molekulare Grundlage für die unterschiedliche Fähigkeit von das humane Chromosom 6 tragenden Mensch-Nager Hybridomazellen, Vγ9Vδ2 T Zellen in Anwesenheit von SBA und Aminobisphosphonaten zu aktivieren?
author Karunakaran, Mohindar Murugesh
author_facet Karunakaran, Mohindar Murugesh
author_sort Karunakaran, Mohindar Murugesh
title Evolution of Vγ9Vδ2 T-cells
title_short Evolution of Vγ9Vδ2 T-cells
title_full Evolution of Vγ9Vδ2 T-cells
title_fullStr Evolution of Vγ9Vδ2 T-cells
title_full_unstemmed Evolution of Vγ9Vδ2 T-cells
title_sort evolution of vγ9vδ2 t-cells
publishDate 2014
url https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/9987
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99871
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-99871
https://opus.bibliothek.uni-wuerzburg.de/files/9987/MMKarunakaran_Doctoral_Thesis.pdf
work_keys_str_mv AT karunakaranmohindarmurugesh evolutionofvg9vd2tcells
AT karunakaranmohindarmurugesh dieevolutiondervg9vd2tzellen
_version_ 1719246053873549312
spelling ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-99872019-09-07T16:26:31Z Evolution of Vγ9Vδ2 T-cells Die Evolution der Vγ9Vδ2 T-Zellen Karunakaran, Mohindar Murugesh Evolution T-Lymphozyt Chromosom 6 ddc:5 ddc:570 Human Vγ9Vδ2 T cells are the major subset of blood γδ T cells and account for 1-5% of blood T cells. Pyrophosphorylated metabolites of isoprenoid biosynthesis are recognized by human Vγ9Vδ2 T cells and are called as phosphoantigens (PAg). Isopentenyl pyrophosphate (IPP) and (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) are among the few well studied PAg. IPP is found in all organisms while HMBPP is a precursor of IPP found only in eubacteria, plants and apicomplexaen parasite. Interestingly, the PAg reactive Vγ9Vδ2 T cells are so far identified only in human and higher primates but not in rodents. Hence, Vγ9Vδ2 T cells are believed to be restricted to primates. With regard to PAg recognition, a Vγ9JP recombined TCRγ chain and certain CDR3 motifs of the TCR chain are mandatory. The BTN3A1 molecule is essential for a response to PAg. BTN3 is a trans-membrane protein belonging to butyrophilin family of proteins. Though BTN3A1 was found to be essential for PAg presentation, the exact molecular basis of PAg presentation still remains unclear. This thesis presents new data on the evolution of Vγ9Vδ2 TCR and its ligands (BTN3) as well as the genetic basis of PAg presentation to Vγ9Vδ2 TCR. The comprehensive analysis of genomic database sequences at NCBI and other public domain databases revealed for the first time that Vγ9, Vδ2 and BTN3 genes emerged and co-evolved along with the placental mammals. Vγ9, Vδ2 and BTN3 genes are scattered across mammalian species and not restricted to primates. But interestingly, all three genes are highly conserved between phylogenetically distinct species. Moreover, the distribution pattern of Vγ9, Vδ2 TCR genes and BTN3 genes suggests a functional association between these genes representing the TCR - ligand relationship. Alpaca (Vicugna pacos), a member of the camelid family, is one among the 6 candidate non-primate species which were found to possess functional Vγ9, Vδ2 and BTN3 genes. From peripheral lymphocytes of alpaca, Vγ9 chain transcripts with a characteristic JP rearrangement and transcripts of Vδ2 chains with a CDR3 typical for PAg-reactive TCR were identified. The transduction of αβ TCR negative mouse thymoma BW cells with alpaca Vγ9 and Vδ2 TCR chains resulted in surface expression of the TCR complex as it was deduced from detection of cell surface expression of mouse CD3. Cross-linking of alpaca Vγ9Vδ2 TCR transductants with anti-CD3ε led to IL-2 production which confirmed that alpaca Vγ9 and Vδ2 TCR chains pair to form a functional TCR. Besides the conservation of human like Vγ9 and Vδ2 TCR chains, alpaca has conserved an orthologue for human BTN33A1 as well. Interestingly, the predicted PAg binding sites of human BTN3A1 was 100% conserved in deduced amino acid sequence of alpaca BTN3A1. All together alpaca is a promising candidate for further studies as it might have preserved Vγ9Vδ2 T cells to function in surveillance of stress and infections. This thesis also provides the sequence of Vγ9Vδ2 TCR of African green monkey (Chlorocebus aethiops), which was previously unknown. Moreover, our data indicates the lack of any species specific barrier which could hinder the PAg presentation by African monkey derived COS cells to human Vγ9Vδ2 TCR and vice versa of human cells to African green monkey Vγ9Vδ2 TCR which was in contradiction to previously reported findings. Apart from the above, the thesis also presents new data on the genetic basis of PAg presentation to Vγ9Vδ2 T cells, which revealed that human chromosome 6 is sufficient for the presentation of exogenous and endogenous PAg. By employing human/mouse somatic hybrids, we identified the role of human chromosome 6 in PAg presentation and in addition, we observed the lack of capacity of human chromosome 6 positive hybrids to activate Vγ9Vδ2 TCR transductants in the presence of the alkylamine sec-butylamine (SBA). Investigation of Chinese hamster ovary (CHO) cells containing the human chromosome 6 also yielded similar results. This suggests that aminobisphosphonates (zoledronate) and alkylamines employ different mechanisms for activation of Vγ9Vδ2 T cells although both have been described to act by inhibition of farnesyl pyrophosphate synthase activity which is known to increase intracellular levels of the IPP. In conclusion, this thesis suggests that Vγ9, Vδ2 and BTN3 genes controlling Vγ9Vδ2 TCR- ligand relationship emerged and co-evolved along with placental mammals; and also identified candidate non-primate species which could possess Vγ9Vδ2 T cells. Furthermore, it suggests alpaca as a promising non-primate species to investigate the physiological function of Vγ9Vδ2 T cells. With respect to PAg antigen presentation it was shown that chromosome 6 is essential and sufficient for exogenous and endogenous PAg presentation. Moreover, the alkylamine SBA and aminobisphosphonate zoledronate may engage different cellular mechanism to exert inhibition over IPP consumption. The thesis raises interesting questions which need to be addressed in future: 1) What are the environmental and evolutionary factors involved in preservation of Vγ9Vδ2 T cells only by few species? 2) What could be the functional nature and antigen recognition properties of such a conserved T cell subset? 3) What is the genetic and molecular basis of the differential capacity of human chromosome 6 bearing rodent-human hybridoma cells in activating Vγ9Vδ2 T cells in presence of SBA and aminobisphosphonates? Vγ9Vδ2 T Zellen stellen im Menschen die größte Population an γδ T Zellen im Blut dar. Ihr Anteil an den Blut-T Zellen beträgt 1-5%. Humane Vγ9Vδ2 T Zellen erkennen als Phosphoantigene (PAg) bezeichnete pyrophosphorylierte Metabolite der Isoprenoidbiosynthese wobei Isopentenylpyrophosphat (IPP) und (E)-4-Hydroxy-3-methyl-but-2-enylpyrophosphat (HMBPP) zu den wenigen gut erforschten PAg gehören. IPP ist in allen Organismen zu finden während HMBPP ein IPP Vorläufer ist, der nur in Eubakterien, Pflanzen und Apikomplexa vorkommt. Interessanterweise wurden PAg-reaktive Vγ9Vδ2 T Zellen bisher nur im Menschen und höheren Primaten gefunden, aber nicht in Nagern. Daher wurde angenommen, dass Vγ9Vδ2 T Zellen eine exklusiv in Primaten vorkommende Population darstellt. Hinsichtlich der PAg-Bindung sind TCR  Ketten mit einer Rekombination von Vγ9 und JP zwingend notwendig und bestimmte CDR3 Motive der V2 TCR Kette, wobei die Erkennung der PAg von der Präsenz des BTN3A1 Moleküls abhängt. BTN3 ist ein Transmembranprotein und gehört zur Butyrophilinfamilie. Obwohl gezeigt wurde, das BTN3A für die PAg-Präsentierung unerlässlich ist, ist deren molekularer Mechanismus noch immer unklar. Die vorgelegte Arbeit beinhaltet sowohl neue Daten über die Evolution des Vγ9Vδ2 TCR und dessen Liganden (BTN3), als auch über die genetischen Grundlagen der PAg-Präsentierung. Eine umfassende Analyse genomischer Datenbanksequenzen des NCBI sowie anderer öffentlicher Datenbanken zeigte erstmals, dass Vγ9, Vδ2 und BTN3 Gene zusammen mit den höheren Säugetieren (Placentalia) entstanden und sich gemeinsam weiter entwickelten. Vγ9, Vδ2 und BTN3 Gene existieren über die gesamten Placentalia verteilt und nicht allein in Primaten. Erstaunlicherweise sind alle drei Gene auch zwischen phylogenetisch unterschiedlichen Spezies hoch konserviert und das Verteilungsmuster von Vγ9, Vδ2 und BTN3 Genen lässt auf eine funktionale Verbindung dieser Gene schliessen, wie sie die TCR/Ligand Interaktion darstellt. Weitergehende Analysen resultierten in der Identifizierung von sechs möglichen Kandidatenspezies, die nicht zu den Primaten gehören und funktionelle Vγ9, Vδ2 und BTN3 Gene besitzen. Hierzu gehört auch das Alpaka (Vicugna pacos), ein Mitglied der Famile der Kamele. Aus periphären Alpakalymphozyten wurden TCR-γ-Kettentranskripte mit charakteristischem Vγ9JP Rearrangement sowie TCR-δ-Kettentranskripte mit für PAg-reaktive Zellen typischen CDR3 amplifiziert. Die Transduktion der Alpaka-Vγ9 und Vδ2 Ketten in die TCR-negativen Maus T-Zell Hybridomlinie BW resultierte in einer Oberflächenexpression des TCR Komplex wie aus der Zelloberflächenexpression von Maus CD3 geschlossen werde konnte. Die Aktivierung dieses TCR Komplexes mittels anti-CD3ε Antikörpern führte zur Produktion von IL-2 durch die TCR-Transduktante, was die funktionelle Paarung der Alpaka Vγ9 und Vδ2 TCR-Ketten bestätigte. Neben den Vγ9 und Vδ2 TCR-Kettengenen existiert im Alpakagenom ebenso ein konserviertes Ortholog des humanen BTN3. Interessanterweise sind die mutmaßlichen PAg-Bindungsstellen des humanen BTN3A1 in dessen abgeleiteter Aminosäuresequenz zu 100% konserviert. Diese Daten machen das Alpaka zu einen vielversprechenden Kandidaten für weitere Untersuchungen, da hier möglicherweise die Population der Vγ9Vδ2 Zellen in ihrer Funktion zur Überwachung von Stress und Infektionen erhalten geblieben ist. Ebenso liefert diese Arbeit die Sequenz des Vγ9Vδ2 TCR der Grünen Meerkatze (Chlorocebus aethiops), welche zuvor nicht bekannt war. Darüber hinaus wurde keine Speziesspezifität in der Präsentierung von PAg durch COS Zellen der Grünen Meerkatze für den humanen Vγ9Vδ2 TCR oder umgekehrt der Präsentierung von PAg durch Meerkatzenzellen für humane Vγ9Vδ2 TCRs gefunden, was im im Widerspruch zu bisher veröffentlichten Ergebnissen steht. Zudem liefert diese Arbeit auch neue Ergebnisse zur genetischen Grundlage der PAg- Präsentierung für die Vγ9Vδ2 T Zellen. Hier zeigte sich, dass das humane Chromosom 6 für die Präsentierung exogener sowie endogener PAg ausreicht. Durch die Generierung somatischer Mensch/Maus Hybride konnten wir die Rolle des humanen Chromosom 6 in der Phosphoantigenpräsentierung ermitteln und zudem beobachten, dass Chromosom 6 positive Hybride nicht in der Lage waren, Vγ9Vδ2 TCR Transduktanten in Anwesenheit des Alkylamins sec-Butylamin (SBA) zu aktivieren. Desweiteren brachten Versuche mit Ovarialzellen des chinesischen Hamsters (CHO), die das humane Chromosom 6 enthielten, ähnliche Ergebnisse. Dies legt nahe, dass Aminobisphosphonate (Zoledronat) und Alkylamine unterschiedliche Mechanismen der Aktivierung von Vγ9Vδ2 T Zellen nutzen obwohl für beide beschrieben ist, dass sie durch Inhibition der Farnesylpyrophosphatsynthase wirken, die wiederum zum Anstieg des intrazellulären IPP-Spiegels führt. Zusammengefasst legt diese Arbeit die Co-Evolution der die Vγ9Vδ2 TCR/Ligand Interaktion kontrollierenden Vγ9, Vδ2 und BTN3 Gene in Placentalia nahe und identifiziert nicht den Primaten zugehörige Spezies als Kandidaten, die Vγ9Vδ2T Zellen besitzen könnten, von denen das Alpaka als vielversprechend für die Untersuchung der physiologischen Rolle von Vγ9Vδ2 T Zellen vorgeschlagen wird. Hinsichtlich der PAg-Präsentierung bestätigen die vorliegenden Ergebnisse, dass das humane Chromosom 6 zugleich nötig und ausreichend ist, endogene sowie exogene PAg zu präsentieren. Zudem könnten das Alkylamin SBA und Aminobiosphonat Zoledronat verschiedene Mechanismen zur Inhibierung des IPP Verbrauchs nutzen. Diese Ergebnisse werfen einige Fragen auf, die es in Zukunft zu beantworten gilt: 1) Was sind die Umwelt- und Evolutionsfaktoren, die dazu geführt haben, dass Vγ9Vδ2 T Zellen nur in wenigen Spezies erhalten blieben? 2) Was könnte die funktionale Natur und die Antigenbindungseigenschaften einer solchen konservierten T Zell Population sein? 3) Was ist die genetische und molekulare Grundlage für die unterschiedliche Fähigkeit von das humane Chromosom 6 tragenden Mensch-Nager Hybridomazellen, Vγ9Vδ2 T Zellen in Anwesenheit von SBA und Aminobisphosphonaten zu aktivieren? 2014 doctoralthesis doc-type:doctoralThesis application/pdf https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/9987 urn:nbn:de:bvb:20-opus-99871 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-99871 https://opus.bibliothek.uni-wuerzburg.de/files/9987/MMKarunakaran_Doctoral_Thesis.pdf eng https://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php info:eu-repo/semantics/openAccess