Regulation of TLR-induced macrophage responses by cytoskeleton-associated phosphoproteins

Toll-like receptors (TLR) are pattern recognition receptors (PRR) by which macrophages (MØ) sense pathogen-associated molecular patterns (PAMPs). The recognition of lipopolysaccharide (LPS), the PAMP of gram negative bacteria, by TLR4 triggers signaling cascades and leads to the pro-inflammatory act...

Full description

Bibliographic Details
Main Author: Wenzel, Jens
Format: Doctoral Thesis
Language:English
Published: 2014
Subjects:
Online Access:https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/9884
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98843
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-98843
https://opus.bibliothek.uni-wuerzburg.de/files/9884/Wenzel_Jens_PhD_thesis.pdf
id ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-9884
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Toll-like-Rezeptoren
Makrophage
Phosphoproteine
Zellskelett
ddc:570
spellingShingle Toll-like-Rezeptoren
Makrophage
Phosphoproteine
Zellskelett
ddc:570
Wenzel, Jens
Regulation of TLR-induced macrophage responses by cytoskeleton-associated phosphoproteins
description Toll-like receptors (TLR) are pattern recognition receptors (PRR) by which macrophages (MØ) sense pathogen-associated molecular patterns (PAMPs). The recognition of lipopolysaccharide (LPS), the PAMP of gram negative bacteria, by TLR4 triggers signaling cascades and leads to the pro-inflammatory activation of the cells. A recent quantitative and kinetic analysis of the phosphoproteome of LPS-activated primary macrophages highlighted the cytoskeleton as a cell compartment with an enriched protein phosphorylation. In total 44 cytoskeleton-associated proteins were regulated by this post-translational modification and thus might be involved in the control and regulation of key macrophage functions like spreading, motility and phagocytosis. To investigate the control of cytoskeleton-associated cell functions by TLR4 activation, we first developed a method to quantitatively measure the spreading response of bone marrow MØ after stimulation with LPS. Fluorescence microscopy was used for cell imaging and visualisation of the MØ contact area. In collaboration with the Fraunhofer Institute Erlangen, we developed and validated a software tool for the semi-automated segmentation and quantitation of MØ fluorescence microscopy data, which allowed fast, robust and objective image analysis. Using this method, we observed that LPS caused time-dependent spreading, which was detectable after 1-2 h and maximal after 24 h. Next, the impact of genetic or pharmacological inhibition of known TLR signaling components was investigated. Deficiency in the adapter protein MYD88 strongly reduced spreading activity at the late time points, but had no impact early after LPS-stimulation. A similar effect was observed upon pharmacological inhibition of ERK1/2 signaling, indicating that ERK1/2 mediates MYD88-dependent MØ spreading. In contrast, MØ lacking the MAPK p38 were impaired in the initial spreading response but responded normally 8-24 h after stimulation. The genetic deletion of the MAPK phosphatases DUSP1 and DUSP16 resulted in impaired late spreading, corroborating the essential role for functional MAPK signaling in TLR4-driven MØ spreading. To identify the contribution of other cytoskeletal phosphoproteins to MØ spreading, siRNA knockdown of selected candidate genes in primary murine MØ was employed and combined with automated quantitative image analysis. These experiments revealed a functional role for the Myosins MYO1e and MYO1f in MØ spreading. These motor proteins are strongly phosphorylated in LPS-activated MØ. Because of their ability to simultaneously bind to actin filaments and cell membrane or other proteins, we investigated their role in phagocytosis, cytokine production and antigen presentation. Phagocytosis and killing of bacteria were not affected in Myo1e-/- macrophages. However, MYO1e plays a role in chemokine secretion and antigen presentation processes. MCP1 (CCL2) release was selectively increased in Myo1e-deficient MØ and dendritic cells (DC), while cytokine secretion was unaffected. Furthermore, macrophages and DCs lacking MYO1e showed lower levels of MHC-II on the cell surface. However, mRNA levels of CCL2 and of MHC-II were unaltered. These data suggest a role for MYO1e in the transport of selected chemokines and of MHC-II molecules to the cell surface. MHC-II-restricted antigen presentation assays revealed an impaired capacity of macrophages and DC lacking MYO1e to stimulate antigen-specific T cells, suggesting that the reduced MHC-II expression is functionally relevant. Taken together, in this study first a quantitative image analysis method was developed which allows the unbiased, robust and efficient investigation of the macrophage spreading response. Combination of this method with siRNA knockdown of selected cytoskeleton-associated phosphoproteins led to the identification of MYO1e and MYO1f as regulators of macrophage spreading. Furthermore, we identified MYO1e in MØ and DC to be essential for the intracellular transport of CCL2 and MHC-II to the cell surface and for optimal stimulation of antigen-specific CD4 T cells. === Toll-like Rezeptoren (TLR) sind Mustererkennungsrezeptoren (PRR) durch die Makrophagen (MØ) pathogen-assoziierte molekulare Muster (PAMPs) erkennen. Die Erkennung von Lipopolysacchariden (LPS), dem PAMP gramnegativer Bakterien, durch TLR4 löst Signalkaskaden aus, die zu einer pro-inflammatorischen Aktivierung der Zellen führen. Eine quantitative und kinetische Analyse des Phosphoproteoms LPS-aktivierter primärer Makrophagen identifizierte das Zytoskelett als ein Zellkompartiment mit gesteigerter Proteinphosphorylierung. Insgesamt wurden 44 Zytoskelett-assoziierte Proteine identifiziert, die durch diese post-translationale Modifikation reguliert wurden und demzufolge an der Regulation wichtiger Zellfunktionen von Makrophagen wie Spreading, Motilität und Phagozytose beteiligt sein könnten. Um die Kontrolle Zytoskelett-vermittelter Zellfunktionen nach TLR4 Aktivierung zu untersuchen, entwickelten wir zunächst eine Methode zur quantitativen Messung der Spreadingantwort von Knochenmarksmakrophagen nach LPS Stimulation. Die Visualisierung der Zellen sowie ihrer Kontaktfläche erfolgte hierbei mittels Fluoreszenzmikroskopie. Für eine schnelle, robuste und objektive Analyse der Fluoreszenzaufnahmen entwickelten und validierten wir in Kollaboration mit dem Fraunhofer Institut in Erlangen eine Software zur halbautomatischen Segmentierung und Quantifizierung der Kontaktfläche. Unter Verwendung dieser Methode konnte eine zeitabhängige LPS-induzierte Zunahme der Zellkontaktfläche beobachtet werden, die nach 1-2 Stunden detektierbar war und ein Maximum nach 24 Stunden erreichte. Durch den Einsatz pharmakologischer Inhibitoren sowie genetisch veränderter Zellen wurde anschließend der Einfluss bekannter TLR4-Signalwegkomponenten untersucht. Die genetische Defizienz des Adapterproteins MYD88 führte hierbei zu einer stark reduzierten Spreadingaktivität der Zellen während der späten LPS Stimulationsphase, wohingegen das initiale Spreading nicht beeinflusst wurde. Ein vergleichbarer Effekt konnte unter Verwendung eines pharmakologischen Inhibitors zur Hemmung des ERK1/2 Signalweges identifiziert werden. Diese Beobachtungen deuten darauf hin, dass ERK1/2 für die Weiterleitung des MYD88 vermittelten Spreading notwendig ist. Im Gegensatz dazu wurde in p38-defizienten Makrophagen ein beeinträchtigtes initiales Spreading beobachtet, wohingegen das späte Spreading nach 8 – 24 Stunden nicht beeinflusst war. Die genetische Deletion der MAPK Phosphatasen DUSP1 und DUSP16 resultierte ebenfalls in einer Minderung des späten Spreadings, ebenfalls ein Hinweis auf die essentielle Rolle funktioneller MAPK Signalwege. Um die Beteiligung weiter Zytoskelett-Phosphoproteine am Zellspreading zu identifizieren, wurde die Expression ausgewählter Kandidatengene in primären Makrophagen mittels spezifischer siRNA unterdrückt und das Zellspreading mit Hilfe der entwickelten Software quantifiziert. Diese Versuche zeigten eine funktionelle Rolle der Myosine MYO1e und MYO1f. Diese Motorproteine weisen ebenfalls eine starke Phosphorylierung nach LPS Stimulation auf. Aufgrund ihrer Eigenschaft simultan mit Aktinfilamenten und Zellmembranen sowie anderen Proteinen zu interagieren, untersuchten wir ihre Rolle während der Phagozytose, Zytokinfreisetzung und Antigenpräsentation. Obwohl Myo1e defiziente Makrophagen keine Beeinträchtigung der Phagozytose oder Abtötung von Bakterien aufwiesen, spielte das Motorprotein eine wichtige Rolle in der Chemokinfreisetzung und Antigenpräsentation. Interessanterweise war die Sekretion des Chemokins MCP1 (CCL2) in Myo1e-defizienten Makrophagen und dendritischen Zellen (DC) selektiv erhöht, während die Zytokinfreisetzung unbeeinträchtigt war. Des Weiteren wiesen Myo1e KO Makrophagen und DC eine reduzierte MHC-II Oberflächen-Expression auf, obwohl die MHC-II als auch die CCL2 Transkription auf mRNA Ebene nicht beeinflusst war. Diese Daten legen nahe, dass MYO1e während des Transports bestimmter Chemokine, sowie von MHC-II zur Zelloberfläche eine wichtige Rolle spielt. Zudem zeigten Myo1e KO Makrophagen und DC in einem MHC-II-abhängigen Antigenpräsentationsassay eine abgeschwächte Fähigkeit zur Antigen-spezifischen T-Zell Aktivierung, was die funktionelle Relevanz der reduzierten Expression von MHC-II nahelegt. Zusammenfassend wurde in dieser Studie zunächst eine Methode zur quantitativen Bildanalyse entwickelt, welche eine unvoreingenommene, robuste und effiziente Untersuchung des Spreadings von Makrophagen erlaubte. Die Kombination dieser Methode mit dem spezifischen siRNA Knockdown ausgewählter Zytoskelett-assoziierter Phosphoproteine führte zur Identifizierung von MYO1e und MYO1f als wichtige Regulatoren dieser Zellfunktion. Darüber hinaus konnte in Makrophagen und DC eine essentielle Rolle für MYO1e im intrazellulären Transport von CCL2 und MHC-II an die Zelloberfläche identifiziert werden, sowie dessen Notwendigkeit für eine vollständige Aktivierung antigen-spezifischer CD4 T Zellen.
author Wenzel, Jens
author_facet Wenzel, Jens
author_sort Wenzel, Jens
title Regulation of TLR-induced macrophage responses by cytoskeleton-associated phosphoproteins
title_short Regulation of TLR-induced macrophage responses by cytoskeleton-associated phosphoproteins
title_full Regulation of TLR-induced macrophage responses by cytoskeleton-associated phosphoproteins
title_fullStr Regulation of TLR-induced macrophage responses by cytoskeleton-associated phosphoproteins
title_full_unstemmed Regulation of TLR-induced macrophage responses by cytoskeleton-associated phosphoproteins
title_sort regulation of tlr-induced macrophage responses by cytoskeleton-associated phosphoproteins
publishDate 2014
url https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/9884
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98843
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-98843
https://opus.bibliothek.uni-wuerzburg.de/files/9884/Wenzel_Jens_PhD_thesis.pdf
work_keys_str_mv AT wenzeljens regulationoftlrinducedmacrophageresponsesbycytoskeletonassociatedphosphoproteins
AT wenzeljens regulationderantwortvonmakrophagenauftlrstimulationdurchzytoskelettassoziiertephosphoproteine
_version_ 1719246045132619776
spelling ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-98842019-09-07T16:26:31Z Regulation of TLR-induced macrophage responses by cytoskeleton-associated phosphoproteins Regulation der Antwort von Makrophagen auf TLR-Stimulation durch Zytoskelett-assoziierte Phosphoproteine Wenzel, Jens Toll-like-Rezeptoren Makrophage Phosphoproteine Zellskelett ddc:570 Toll-like receptors (TLR) are pattern recognition receptors (PRR) by which macrophages (MØ) sense pathogen-associated molecular patterns (PAMPs). The recognition of lipopolysaccharide (LPS), the PAMP of gram negative bacteria, by TLR4 triggers signaling cascades and leads to the pro-inflammatory activation of the cells. A recent quantitative and kinetic analysis of the phosphoproteome of LPS-activated primary macrophages highlighted the cytoskeleton as a cell compartment with an enriched protein phosphorylation. In total 44 cytoskeleton-associated proteins were regulated by this post-translational modification and thus might be involved in the control and regulation of key macrophage functions like spreading, motility and phagocytosis. To investigate the control of cytoskeleton-associated cell functions by TLR4 activation, we first developed a method to quantitatively measure the spreading response of bone marrow MØ after stimulation with LPS. Fluorescence microscopy was used for cell imaging and visualisation of the MØ contact area. In collaboration with the Fraunhofer Institute Erlangen, we developed and validated a software tool for the semi-automated segmentation and quantitation of MØ fluorescence microscopy data, which allowed fast, robust and objective image analysis. Using this method, we observed that LPS caused time-dependent spreading, which was detectable after 1-2 h and maximal after 24 h. Next, the impact of genetic or pharmacological inhibition of known TLR signaling components was investigated. Deficiency in the adapter protein MYD88 strongly reduced spreading activity at the late time points, but had no impact early after LPS-stimulation. A similar effect was observed upon pharmacological inhibition of ERK1/2 signaling, indicating that ERK1/2 mediates MYD88-dependent MØ spreading. In contrast, MØ lacking the MAPK p38 were impaired in the initial spreading response but responded normally 8-24 h after stimulation. The genetic deletion of the MAPK phosphatases DUSP1 and DUSP16 resulted in impaired late spreading, corroborating the essential role for functional MAPK signaling in TLR4-driven MØ spreading. To identify the contribution of other cytoskeletal phosphoproteins to MØ spreading, siRNA knockdown of selected candidate genes in primary murine MØ was employed and combined with automated quantitative image analysis. These experiments revealed a functional role for the Myosins MYO1e and MYO1f in MØ spreading. These motor proteins are strongly phosphorylated in LPS-activated MØ. Because of their ability to simultaneously bind to actin filaments and cell membrane or other proteins, we investigated their role in phagocytosis, cytokine production and antigen presentation. Phagocytosis and killing of bacteria were not affected in Myo1e-/- macrophages. However, MYO1e plays a role in chemokine secretion and antigen presentation processes. MCP1 (CCL2) release was selectively increased in Myo1e-deficient MØ and dendritic cells (DC), while cytokine secretion was unaffected. Furthermore, macrophages and DCs lacking MYO1e showed lower levels of MHC-II on the cell surface. However, mRNA levels of CCL2 and of MHC-II were unaltered. These data suggest a role for MYO1e in the transport of selected chemokines and of MHC-II molecules to the cell surface. MHC-II-restricted antigen presentation assays revealed an impaired capacity of macrophages and DC lacking MYO1e to stimulate antigen-specific T cells, suggesting that the reduced MHC-II expression is functionally relevant. Taken together, in this study first a quantitative image analysis method was developed which allows the unbiased, robust and efficient investigation of the macrophage spreading response. Combination of this method with siRNA knockdown of selected cytoskeleton-associated phosphoproteins led to the identification of MYO1e and MYO1f as regulators of macrophage spreading. Furthermore, we identified MYO1e in MØ and DC to be essential for the intracellular transport of CCL2 and MHC-II to the cell surface and for optimal stimulation of antigen-specific CD4 T cells. Toll-like Rezeptoren (TLR) sind Mustererkennungsrezeptoren (PRR) durch die Makrophagen (MØ) pathogen-assoziierte molekulare Muster (PAMPs) erkennen. Die Erkennung von Lipopolysacchariden (LPS), dem PAMP gramnegativer Bakterien, durch TLR4 löst Signalkaskaden aus, die zu einer pro-inflammatorischen Aktivierung der Zellen führen. Eine quantitative und kinetische Analyse des Phosphoproteoms LPS-aktivierter primärer Makrophagen identifizierte das Zytoskelett als ein Zellkompartiment mit gesteigerter Proteinphosphorylierung. Insgesamt wurden 44 Zytoskelett-assoziierte Proteine identifiziert, die durch diese post-translationale Modifikation reguliert wurden und demzufolge an der Regulation wichtiger Zellfunktionen von Makrophagen wie Spreading, Motilität und Phagozytose beteiligt sein könnten. Um die Kontrolle Zytoskelett-vermittelter Zellfunktionen nach TLR4 Aktivierung zu untersuchen, entwickelten wir zunächst eine Methode zur quantitativen Messung der Spreadingantwort von Knochenmarksmakrophagen nach LPS Stimulation. Die Visualisierung der Zellen sowie ihrer Kontaktfläche erfolgte hierbei mittels Fluoreszenzmikroskopie. Für eine schnelle, robuste und objektive Analyse der Fluoreszenzaufnahmen entwickelten und validierten wir in Kollaboration mit dem Fraunhofer Institut in Erlangen eine Software zur halbautomatischen Segmentierung und Quantifizierung der Kontaktfläche. Unter Verwendung dieser Methode konnte eine zeitabhängige LPS-induzierte Zunahme der Zellkontaktfläche beobachtet werden, die nach 1-2 Stunden detektierbar war und ein Maximum nach 24 Stunden erreichte. Durch den Einsatz pharmakologischer Inhibitoren sowie genetisch veränderter Zellen wurde anschließend der Einfluss bekannter TLR4-Signalwegkomponenten untersucht. Die genetische Defizienz des Adapterproteins MYD88 führte hierbei zu einer stark reduzierten Spreadingaktivität der Zellen während der späten LPS Stimulationsphase, wohingegen das initiale Spreading nicht beeinflusst wurde. Ein vergleichbarer Effekt konnte unter Verwendung eines pharmakologischen Inhibitors zur Hemmung des ERK1/2 Signalweges identifiziert werden. Diese Beobachtungen deuten darauf hin, dass ERK1/2 für die Weiterleitung des MYD88 vermittelten Spreading notwendig ist. Im Gegensatz dazu wurde in p38-defizienten Makrophagen ein beeinträchtigtes initiales Spreading beobachtet, wohingegen das späte Spreading nach 8 – 24 Stunden nicht beeinflusst war. Die genetische Deletion der MAPK Phosphatasen DUSP1 und DUSP16 resultierte ebenfalls in einer Minderung des späten Spreadings, ebenfalls ein Hinweis auf die essentielle Rolle funktioneller MAPK Signalwege. Um die Beteiligung weiter Zytoskelett-Phosphoproteine am Zellspreading zu identifizieren, wurde die Expression ausgewählter Kandidatengene in primären Makrophagen mittels spezifischer siRNA unterdrückt und das Zellspreading mit Hilfe der entwickelten Software quantifiziert. Diese Versuche zeigten eine funktionelle Rolle der Myosine MYO1e und MYO1f. Diese Motorproteine weisen ebenfalls eine starke Phosphorylierung nach LPS Stimulation auf. Aufgrund ihrer Eigenschaft simultan mit Aktinfilamenten und Zellmembranen sowie anderen Proteinen zu interagieren, untersuchten wir ihre Rolle während der Phagozytose, Zytokinfreisetzung und Antigenpräsentation. Obwohl Myo1e defiziente Makrophagen keine Beeinträchtigung der Phagozytose oder Abtötung von Bakterien aufwiesen, spielte das Motorprotein eine wichtige Rolle in der Chemokinfreisetzung und Antigenpräsentation. Interessanterweise war die Sekretion des Chemokins MCP1 (CCL2) in Myo1e-defizienten Makrophagen und dendritischen Zellen (DC) selektiv erhöht, während die Zytokinfreisetzung unbeeinträchtigt war. Des Weiteren wiesen Myo1e KO Makrophagen und DC eine reduzierte MHC-II Oberflächen-Expression auf, obwohl die MHC-II als auch die CCL2 Transkription auf mRNA Ebene nicht beeinflusst war. Diese Daten legen nahe, dass MYO1e während des Transports bestimmter Chemokine, sowie von MHC-II zur Zelloberfläche eine wichtige Rolle spielt. Zudem zeigten Myo1e KO Makrophagen und DC in einem MHC-II-abhängigen Antigenpräsentationsassay eine abgeschwächte Fähigkeit zur Antigen-spezifischen T-Zell Aktivierung, was die funktionelle Relevanz der reduzierten Expression von MHC-II nahelegt. Zusammenfassend wurde in dieser Studie zunächst eine Methode zur quantitativen Bildanalyse entwickelt, welche eine unvoreingenommene, robuste und effiziente Untersuchung des Spreadings von Makrophagen erlaubte. Die Kombination dieser Methode mit dem spezifischen siRNA Knockdown ausgewählter Zytoskelett-assoziierter Phosphoproteine führte zur Identifizierung von MYO1e und MYO1f als wichtige Regulatoren dieser Zellfunktion. Darüber hinaus konnte in Makrophagen und DC eine essentielle Rolle für MYO1e im intrazellulären Transport von CCL2 und MHC-II an die Zelloberfläche identifiziert werden, sowie dessen Notwendigkeit für eine vollständige Aktivierung antigen-spezifischer CD4 T Zellen. 2014 doctoralthesis doc-type:doctoralThesis application/pdf https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/9884 urn:nbn:de:bvb:20-opus-98843 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-98843 https://opus.bibliothek.uni-wuerzburg.de/files/9884/Wenzel_Jens_PhD_thesis.pdf eng https://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php info:eu-repo/semantics/openAccess