East African Seasonal Rainfall prediction using multiple linear regression and regression with ARIMA errors models

The detrimental impacts of climate variability on water, agriculture, and food resources in East Africa underscore the importance of reliable seasonal climate prediction. To overcome this difficulty RARIMAE method were evolved. Applications RARIMAE in the literature shows that amalgamating different...

Full description

Bibliographic Details
Main Author: Karama, Alphonse
Format: Doctoral Thesis
Language:English
Published: 2021
Subjects:
Online Access:https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/25183
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251831
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-251831
https://doi.org/10.25972/OPUS-25183
https://opus.bibliothek.uni-wuerzburg.de/files/25183/Karama_PhD_Thesis.pdf
Description
Summary:The detrimental impacts of climate variability on water, agriculture, and food resources in East Africa underscore the importance of reliable seasonal climate prediction. To overcome this difficulty RARIMAE method were evolved. Applications RARIMAE in the literature shows that amalgamating different methods can be an efficient and effective way to improve the forecasts of time series under consideration. With these motivations, attempt have been made to develop a multiple linear regression model (MLR) and a RARIMAE models for forecasting seasonal rainfall in east Africa under the following objectives: 1. To develop MLR model for seasonal rainfall prediction in East Africa. 2. To develop a RARIMAE model for seasonal rainfall prediction in East Africa. 3. Comparison of model's efficiency under consideration In order to achieve the above objectives, the monthly precipitation data covering the period from 1949 to 2000 was obtained from Climate Research Unit (CRU). Next to that, the first differenced climate indices were used as predictors. In the first part of this study, the analyses of the rainfall fluctuation in whole Central- East Africa region which span over a longitude of 15 degrees East to 55 degrees East and a latitude of 15 degrees South to 15 degrees North was done by the help of maps. For models’ comparison, the R-squared values for the MLR model are subtracted from the R-squared values of RARIMAE model. The results show positive values which indicates that R-squared is improved by RARIMAE model. On the other side, the root mean square errors (RMSE) values of the RARIMAE model are subtracted from the RMSE values of the MLR model and the results show negative value which indicates that RMSE is reduced by RARIMAE model for training and testing datasets. For the second part of this study, the area which is considered covers a longitude of 31.5 degrees East to 41 degrees East and a latitude of 3.5 degrees South to 0.5 degrees South. This region covers Central-East of the Democratic Republic of Congo (DRC), north of Burundi, south of Uganda, Rwanda, north of Tanzania and south of Kenya. Considering a model constructed based on the average rainfall time series in this region, the long rainfall season counts the nine months lead of the first principal component of Indian sea level pressure (SLP_PC19) and the nine months lead of Dipole Mode Index (DMI_LR9) as selected predictors for both statistical and predictive model. On the other side, the short rainfall season counts the three months lead of the first principal component of Indian sea surface temperature (SST_PC13) and the three months lead of Southern Oscillation Index (SOI_SR3) as predictors for predictive model. For short rainfall season statistical model SAOD current time series (SAOD_SR0) was added on the two predictors in predictive model. By applying a MLR model it is shown that the forecast can explain 27.4% of the total variation and has a RMSE of 74.2mm/season for long rainfall season while for the RARIMAE the forecast explains 53.6% of the total variation and has a RMSE of 59.4mm/season. By applying a MLR model it is shown that the forecast can explain 22.8% of the total variation and has a RMSE of 106.1 mm/season for short rainfall season predictive model while for the RARIMAE the forecast explains 55.1% of the total variation and has a RMSE of 81.1 mm/season. From such comparison, a significant rise in R-squared, a decrease of RMSE values were observed in RARIMAE models for both short rainfall and long rainfall season averaged time series. In terms of reliability, RARIMAE outperformed its MLR counterparts with better efficiency and accuracy. Therefore, whenever the data suffer from autocorrelation, we can go for MLR with ARIMA error, the ARIMA error part is more to correct the autocorrelation thereby improving the variance and productiveness of the model. === Die nachteiligen Auswirkungen der Klimavariabilität auf Wasser, Landwirtschaft und Nahrungsressourcen in Ostafrika unterstreichen die Bedeutung einer zuverlässigen saisonalen Klimavorhersage. Um diese Schwierigkeit zu überwinden, wurden die Regression mit ARIMA-Fehlern (RARIMAE)-Methoden entwickelt. Die Anwendungen RARIMAE in der Literatur zeigen, dass die Zusammenführung verschiedener Methoden ein effizienter und effektiver Weg sein kann, um die Vorhersagen der betrachteten Zeitreihen zu verbessern. Aus dieser Motivation heraus wurde versucht, ein multiples lineares Regressionsmodell (MLR) und ein RARIMAE-Modell zur Vorhersage saisonaler Niederschläge in Ostafrika unter folgenden Zielsetzungen zu entwickeln: 1. Entwicklung eines MLR-Modells für die Vorhersage der saisonalen Regenfälle in Ostafrika. 2. Entwicklung eines RARIMAE-Modells für die saisonale Niederschlagsvorhersage in Ostafrika. 3. Vergleich der betrachteten Modelleffizienz Um die oben genannten Ziele zu erreichen, wurden die monatlichen Niederschlagsdaten für den Zeitraum von 1949 bis 2000 von der Climate Research Unit (CRU) bezogen. Daneben wurden die ersten differenzierten Klimaindizes als Prädiktoren verwendet. Im ersten Teil dieser Studie wurden die Niederschlagsschwankungen in der gesamten Region Zentral-Ostafrika, die sich über einen Längengrad von 15 Grad Ost bis 55 Grad Ost und einen Breitengrad von 15 Grad Süd bis 15 Grad Nord erstrecken, analysiert mit Hilfe von Karten gemacht. Für den Modellvergleich werden die Erklärte Varianz-Werte für das MLR-Modell von den R-Quadrat-Werten des RARIMAE-Modells abgezogen. Die Ergebnisse zeigen positive Werte, was darauf hinweist, die Erklärte Varianz durch das RARIMAE-Modell verbessert wird. Auf der anderen Seite werden die Root-Mean-Square-Error-Werte (RMSE) des RARIMAE-Modells von den RMSE-Werten des MLR-Modells subtrahiert und die Ergebnisse zeigen einen negativen Wert, der darauf hinweist, dass der RMSE durch das RARIMAE-Modell für Trainings- und Testdatensätze reduziert wird. Für den zweiten Teil dieser Studie umfasst das betrachtete Gebiet einen Längengrad von 31,5 Grad Ost bis 41 Grad Ost und einen Breitengrad von 3,5 Grad Süd bis 0,5 Grad Süd. Diese Region umfasst den Zentral-Osten der Demokratischen Republik Kongo (DRC), nördlich von Burundi, südlich von Uganda, Ruanda, nördlich von Tansania und südlich von Kenia. Betrachtet man ein Modell, das auf der Grundlage der durchschnittlichen Niederschlagszeitreihen in dieser Region erstellt wurde, zählt die lange Regensaison den neunmonatigen Vorsprung der ersten Hauptkomponente des indischen Meeresspiegeldrucks (SLP_PC19) und den neunmonatigen Vorsprung des Dipolmodus-Index (DMI_LR9) als ausgewählte Prädiktoren für statistische und prädiktive Modelle. Auf der anderen Seite zählt die kurze Regenzeit den dreimonatigen Vorsprung der ersten Hauptkomponente der indischen Meeresoberflächentemperatur (SST_PC13) und den dreimonatigen Vorsprung des Southern Oscillation Index (SOI_SR3) als Prädiktoren für das Vorhersagemodell. Für das statistische Modell der kurzen Regenzeit wurde die aktuelle SAOD-Zeitreihe (SAOD_SR0) zu den beiden Prädiktoren im Vorhersagemodell hinzugefügt. Durch die Anwendung eines MLR-Modells wird gezeigt, dass die Vorhersage 27,4 % der Gesamtvariation erklären kann und einen RMSE von 74,2 mm/Saison für eine lange Regenzeit hat, während die Vorhersage für RARIMAE 53,6% der Gesamtvariation erklärt und einen RMSE von 59,4 mm/Saison hat. Durch die Anwendung eines MLR-Modells wird gezeigt, dass die Vorhersage 22,8% der Gesamtvariation erklären kann und einen RMSE von 106,1 mm/Saison für das Vorhersagemodell für kurze Regenzeiten hat, während die Vorhersage für RARIMAE 55,1% der Gesamtvariation erklärt und a RMSE von 81,1 mm/Saison. Aus einem solchen Vergleich wurde ein signifikanter Anstieg die Erklärte Varianz und eine Abnahme der RMSE-Werte in RARIMAE-Modellen sowohl für die gemittelten Zeitreihen für kurze Regenfälle als auch für lange Regenzeiten beobachtet. In Bezug auf die Zuverlässigkeit übertraf RARIMAE seine MLR-Pendants mit besserer Effizienz und Genauigkeit. Wenn die Daten unter Autokorrelation leiden, können wir uns daher für MLR mit ARIMA-Fehler entscheiden. Der ARIMA-Fehlerteil dient mehr dazu, die Autokorrelation zu korrigieren, wodurch die Varianz und Produktivität des Modells verbessert wird.