Effekt von Mitofusin 2 Defizienz auf die IP\(_3\)-induzierte mitochondriale Calciumregulation in Kardiomyozyten

Das Herz ist physiologisch auf einen fein regulierten und ausgeglichenen bioenergetischen Energiehaushalt angewiesen, um auf akute Belastungssituationen adäquat reagieren zu können und oxidativen Stress zu vermeiden. Ca2+ reguliert zentral sowohl die zyklischen Kontraktions-/Relaxationsprozesse (ECC...

Full description

Bibliographic Details
Main Author: Mages, Christine Maria Gabriele
Format: Doctoral Thesis
Language:deu
Published: 2021
Subjects:
Online Access:https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/23796
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237966
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-237966
https://doi.org/10.25972/OPUS-23796
https://opus.bibliothek.uni-wuerzburg.de/files/23796/Mages_Christine_Dissertation.pdf
id ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-23796
record_format oai_dc
collection NDLTD
language deu
format Doctoral Thesis
sources NDLTD
topic SR/Mitochondriales Feedback
Mitofusin2
ddc:610
spellingShingle SR/Mitochondriales Feedback
Mitofusin2
ddc:610
Mages, Christine Maria Gabriele
Effekt von Mitofusin 2 Defizienz auf die IP\(_3\)-induzierte mitochondriale Calciumregulation in Kardiomyozyten
description Das Herz ist physiologisch auf einen fein regulierten und ausgeglichenen bioenergetischen Energiehaushalt angewiesen, um auf akute Belastungssituationen adäquat reagieren zu können und oxidativen Stress zu vermeiden. Ca2+ reguliert zentral sowohl die zyklischen Kontraktions-/Relaxationsprozesse (ECC) als auch unmittelbar den mitochondrialen Metabolismus. Der ECC liegt in den Kardiomyozyten die Ca2+- Freisetzung durch die RyR2 zu Grunde; die IP3 Rezeptoren des sarkoplasmatischen Retikulums (SR) führen davon unabhängig zu einer Ca2+ Freisetzung aus dem SR. Diese IP3R vermittelten Signale werden in den räumlich nahe gelegenen Mitochondrien zum Teil über den mRyR1 in die mitochondriale Matrix aufgenommen und stimulieren dort langfristig die oxidative Phosphorylierung und den Erhalt der antioxidativen Kapazität. Die enge räumliche Nähe zwischen SR und Mitochondrien wird durch Strukturproteine wie Mitofusin 2 (Mfn2) ergänzt, die das SR mit der äußeren Mitochondrienmembran koppeln und so die Ca2+-Interaktion beeinflussen. Ziel der Arbeit war, den Effekt von Mfn2 Defizienz auf die IP3 induzierte mitochondriale Ca2+-Regulation in Kardiomyozyten zu evaluieren. Dazu erfolgten Fluoreszenzfärbungen an adulten isolierten Ventrikelkardiomyozyten kardiospezifischer Mfn2 Knock-Out (KO) Mäusen bzw. deren wildtypischen Geschwistertieren (WT). Erhobene Parameter umfassten das mitochondriale Ca2+, das mitochondriale Membranpotenzial, die mitochondriale Superoxidbildung und mitochondriale ATP-Gehalt. Die Ergebnisse bestätigten eine Signalachse, bei der die Stimulation von isolierten murinen Kardiomyozyten mit dem IP3 Agonisten ET-1 zu einer mitochondrialen Ca2+ Aufnahme führte, dem Erhalt des mitochondrialen Membranpotenzials diente und der ATP Gehalt stiegt. Bei induzierter kardiospezifischer Ablation von Mfn2 geht diese SR-mitochondriale Interaktion verloren, und es entstand ein energetisches Defizit sowie eine verminderte Superoxidbildung. Bei beta-adrenerger Stimulation mit Isoproterenol (ISO) resultierte in WT zwar eine mitochondriale Ca2+-Aufnahme, allerdings ein Abfall des ATP-Gehaltes. In den Mfn2 defizienten Kardiomyozyten zeigte sich eine Steigerung des ATP-Gehaltes auch auf beta-adrenerge Stimulation, die einen energetischen Kompensationsmechanismus in den Mfn2 KO Tieren vermuten lässt. Dies identifiziert Mfn2 als kritische Strukturkomponente für die basale bioenergetische Adaptation der durch IP3R-mRyR1 vermittelten Signalachse unter physiologischen Bedingungen. === Under physiological conditions the heart needs a finely tuned bioenergetic adaptation system to adequately match sudden changes in the workload and to avoid oxidative stress. Ca2+ regulates the excitation-contraction-coupling (ECC) as well as the mitochondrial metabolism. The ECC is based on the release of Ca2+ via the RyR2 while the IP3 receptor (IP3R) releases Ca2+ independently from the sarcoplasmatic reticulum (SR). The signals from the latter are taken up by the surrounding mitochondria via the mRyR1 channel to stimulate both the basal oxidative phosphorylation and the antioxidative capacity. The close functional relationship between mitochondria and SR is affected by membrane-coupling proteins like mitofusin 2 (Mfn2) that may influence the Ca2+ transmission. This work aimed at evaluating the effect of Mfn2 deficiency on the IP3-induced mitochondrial calcium regulation in cardiomyocytes. Mitochondrial Ca2+ uptake, membrane potential, redox state and ATP generation were monitored in isolated ventricular cardiomyocytes of cardio-specific mitofusin 2 Knock-out (KO) mice and their wildtype littermates (WT) via fluorescent staining using laser scanning confocal microscopy. The results show that stimulation with the IP3 agonist ET-1 led to mitochondrial calcium uptake, ATP generation and maintained mitochondrial membrane potential. The cardio-specific loss of the tethering protein Mfn2 resulted in an energetic deficit and decreased levels of superoxide. Beta adrenergic receptor activation with isoproterenol (ISO) in WT resulted in a mitochondrial calcium uptake but decreased ATP content, while leading in Mfn2 KO cardiomyocyte to increased levels of ATP, pointing probably towards an energetic compensatory mechanism. Taken together these results propose Mfn2 as a critical structural component that affects under physiological conditions the privileged SR-mitochondrial metabolic feedback mechanism via IP3R and mRYR1 to maintain normal cardiac function and bioenergetics.
author Mages, Christine Maria Gabriele
author_facet Mages, Christine Maria Gabriele
author_sort Mages, Christine Maria Gabriele
title Effekt von Mitofusin 2 Defizienz auf die IP\(_3\)-induzierte mitochondriale Calciumregulation in Kardiomyozyten
title_short Effekt von Mitofusin 2 Defizienz auf die IP\(_3\)-induzierte mitochondriale Calciumregulation in Kardiomyozyten
title_full Effekt von Mitofusin 2 Defizienz auf die IP\(_3\)-induzierte mitochondriale Calciumregulation in Kardiomyozyten
title_fullStr Effekt von Mitofusin 2 Defizienz auf die IP\(_3\)-induzierte mitochondriale Calciumregulation in Kardiomyozyten
title_full_unstemmed Effekt von Mitofusin 2 Defizienz auf die IP\(_3\)-induzierte mitochondriale Calciumregulation in Kardiomyozyten
title_sort effekt von mitofusin 2 defizienz auf die ip\(_3\)-induzierte mitochondriale calciumregulation in kardiomyozyten
publishDate 2021
url https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/23796
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237966
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-237966
https://doi.org/10.25972/OPUS-23796
https://opus.bibliothek.uni-wuerzburg.de/files/23796/Mages_Christine_Dissertation.pdf
work_keys_str_mv AT mageschristinemariagabriele effektvonmitofusin2defizienzaufdieip3induziertemitochondrialecalciumregulationinkardiomyozyten
AT mageschristinemariagabriele effectofmitofusin2deficiencyontheip3inducedmitochondrialcalciumregulationincardiomyocytes
_version_ 1719416369875779584
spelling ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-237962021-07-08T05:16:04Z Effekt von Mitofusin 2 Defizienz auf die IP\(_3\)-induzierte mitochondriale Calciumregulation in Kardiomyozyten Effect of mitofusin 2 deficiency on the IP\(_3\)-induced mitochondrial calcium regulation in cardiomyocytes Mages, Christine Maria Gabriele SR/Mitochondriales Feedback Mitofusin2 ddc:610 Das Herz ist physiologisch auf einen fein regulierten und ausgeglichenen bioenergetischen Energiehaushalt angewiesen, um auf akute Belastungssituationen adäquat reagieren zu können und oxidativen Stress zu vermeiden. Ca2+ reguliert zentral sowohl die zyklischen Kontraktions-/Relaxationsprozesse (ECC) als auch unmittelbar den mitochondrialen Metabolismus. Der ECC liegt in den Kardiomyozyten die Ca2+- Freisetzung durch die RyR2 zu Grunde; die IP3 Rezeptoren des sarkoplasmatischen Retikulums (SR) führen davon unabhängig zu einer Ca2+ Freisetzung aus dem SR. Diese IP3R vermittelten Signale werden in den räumlich nahe gelegenen Mitochondrien zum Teil über den mRyR1 in die mitochondriale Matrix aufgenommen und stimulieren dort langfristig die oxidative Phosphorylierung und den Erhalt der antioxidativen Kapazität. Die enge räumliche Nähe zwischen SR und Mitochondrien wird durch Strukturproteine wie Mitofusin 2 (Mfn2) ergänzt, die das SR mit der äußeren Mitochondrienmembran koppeln und so die Ca2+-Interaktion beeinflussen. Ziel der Arbeit war, den Effekt von Mfn2 Defizienz auf die IP3 induzierte mitochondriale Ca2+-Regulation in Kardiomyozyten zu evaluieren. Dazu erfolgten Fluoreszenzfärbungen an adulten isolierten Ventrikelkardiomyozyten kardiospezifischer Mfn2 Knock-Out (KO) Mäusen bzw. deren wildtypischen Geschwistertieren (WT). Erhobene Parameter umfassten das mitochondriale Ca2+, das mitochondriale Membranpotenzial, die mitochondriale Superoxidbildung und mitochondriale ATP-Gehalt. Die Ergebnisse bestätigten eine Signalachse, bei der die Stimulation von isolierten murinen Kardiomyozyten mit dem IP3 Agonisten ET-1 zu einer mitochondrialen Ca2+ Aufnahme führte, dem Erhalt des mitochondrialen Membranpotenzials diente und der ATP Gehalt stiegt. Bei induzierter kardiospezifischer Ablation von Mfn2 geht diese SR-mitochondriale Interaktion verloren, und es entstand ein energetisches Defizit sowie eine verminderte Superoxidbildung. Bei beta-adrenerger Stimulation mit Isoproterenol (ISO) resultierte in WT zwar eine mitochondriale Ca2+-Aufnahme, allerdings ein Abfall des ATP-Gehaltes. In den Mfn2 defizienten Kardiomyozyten zeigte sich eine Steigerung des ATP-Gehaltes auch auf beta-adrenerge Stimulation, die einen energetischen Kompensationsmechanismus in den Mfn2 KO Tieren vermuten lässt. Dies identifiziert Mfn2 als kritische Strukturkomponente für die basale bioenergetische Adaptation der durch IP3R-mRyR1 vermittelten Signalachse unter physiologischen Bedingungen. Under physiological conditions the heart needs a finely tuned bioenergetic adaptation system to adequately match sudden changes in the workload and to avoid oxidative stress. Ca2+ regulates the excitation-contraction-coupling (ECC) as well as the mitochondrial metabolism. The ECC is based on the release of Ca2+ via the RyR2 while the IP3 receptor (IP3R) releases Ca2+ independently from the sarcoplasmatic reticulum (SR). The signals from the latter are taken up by the surrounding mitochondria via the mRyR1 channel to stimulate both the basal oxidative phosphorylation and the antioxidative capacity. The close functional relationship between mitochondria and SR is affected by membrane-coupling proteins like mitofusin 2 (Mfn2) that may influence the Ca2+ transmission. This work aimed at evaluating the effect of Mfn2 deficiency on the IP3-induced mitochondrial calcium regulation in cardiomyocytes. Mitochondrial Ca2+ uptake, membrane potential, redox state and ATP generation were monitored in isolated ventricular cardiomyocytes of cardio-specific mitofusin 2 Knock-out (KO) mice and their wildtype littermates (WT) via fluorescent staining using laser scanning confocal microscopy. The results show that stimulation with the IP3 agonist ET-1 led to mitochondrial calcium uptake, ATP generation and maintained mitochondrial membrane potential. The cardio-specific loss of the tethering protein Mfn2 resulted in an energetic deficit and decreased levels of superoxide. Beta adrenergic receptor activation with isoproterenol (ISO) in WT resulted in a mitochondrial calcium uptake but decreased ATP content, while leading in Mfn2 KO cardiomyocyte to increased levels of ATP, pointing probably towards an energetic compensatory mechanism. Taken together these results propose Mfn2 as a critical structural component that affects under physiological conditions the privileged SR-mitochondrial metabolic feedback mechanism via IP3R and mRYR1 to maintain normal cardiac function and bioenergetics. 2021 doctoralthesis doc-type:doctoralThesis application/pdf https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/23796 urn:nbn:de:bvb:20-opus-237966 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-237966 https://doi.org/10.25972/OPUS-23796 https://opus.bibliothek.uni-wuerzburg.de/files/23796/Mages_Christine_Dissertation.pdf deu https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php info:eu-repo/semantics/openAccess