In-line phase contrast and grating interferometry at a liquid-metal-jet source with micrometer resolution
As a non-destructive testing method, X-ray imaging has proved to be suitable for the examination of a variety of objects. The measurement principle is based on the attenuation of X-rays caused by these objects. This attenuation can be recorded as shades of intensity using X-ray detectors and thus co...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/23591 http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235917 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-235917 https://doi.org/10.25972/OPUS-23591 https://opus.bibliothek.uni-wuerzburg.de/files/23591/Balles_Andreas_Phasecontrast.pdf |
Summary: | As a non-destructive testing method, X-ray imaging has proved to be suitable for the examination of a variety of objects. The measurement principle is based on the attenuation of X-rays caused by these objects. This attenuation can be recorded as shades of intensity using X-ray detectors and thus contains information about the inner structure of the investigated object. Since X-rays are electromagnetic waves, they also experience a change of phase in addition to their attenuation while penetrating an object. In general, imaging methods based on this effect are referred to as phase contrast imaging techniques. In the laboratory, the two mainly used methods are the propagation based phase contrast or in-line phase contrast and the grating interferometry.
While in-line phase contrast - under certain conditions - shows edge enhancement at interfaces due to interference, phase contrast in the grating interferometry is only indirectly measurable by the use of several gratings. In addition to phase contrast, grating interferometry provides access to the so-called dark-field imaging contrast, which measures the scattering of X-rays caused by an object.
These two imaging techniques, together with a novel concept of laboratory X-ray sources, the liquid-metal-jet, form the main part of this work. Compared to conventional X-ray sources, the liquid-metal-jet source offers higher brightness. The term brightness is defined by the number of X-ray photons per second, emitting area (area of the X-ray spot) and solid angle at which they are emitted.
On the basis of this source, a high resolution in-line phase contrast setup was partially developed in the scope of this work. Several computed tomographies show the feasibility of in-line phase contrast and the improvement of image quality by applying phase retrieval algorithms.
Moreover, the determination of optimized sample positions for in-line phase contrast imaging is treated at which the edge enhancement is maximized. Based on primitive fiber objects, this optimization has proven to be a good approximation.
With its high brightness in combination with a high spatial coherence, the liquid-metal-jet source is also interesting for grating interferometry. The development of such a setup is also part of this work. The overall concept and the characterization of the setup is presented as well as the applicability and its limits for the investigation of various objects.
Due to the very unique concept of this grating interferometer it was possible to realize a modified interferometer system by using a single grating only. Its concept and results are also presented in this work.
Furthermore, a grating interferometer based on a microfocus X-ray tube was tested regarding its performance. Thereby, parameters like the anode material, acquisition geometry and gratings were altered in order to find the advantages and disadvantages of each configuration. === Als zerstörungsfreie Prüfmethode hat sich die Röntgenbildgebung zur Untersuchung unterschiedlichster Prüfobjekte bewährt. Das Messprinzip beruht dabei auf der durch das Prüfobjekt verursachten Schwächung der Röntgenstrahlung. Diese Schwächung kann als Helligkeitsschattierungen mittels eines Detektors aufgenommen werden und beinhaltet somit Informationen über das Innere des untersuchten Objekts. Da Röntgenstrahlen elektromagnetische Wellen sind, erfahren sie beim Durchdringen eines Objekts neben der Schwächung auch eine Veränderung ihrer Phase. Bildgebungsmethoden auf Grundlage dieses Effekts werden allgemein als Phasenkontrastbildgebungsverfahren zusammengefasst. Im Bereich von Laboraufbauten sind die zwei hauptsächlich genutzten Methoden der propagationsbasierte Phasenkontrast, auch In-line Phasenkontrast genannt, und die Gitterinterferometrie.
Während sich beim In-line Phasenkontrast – unter gewissen Umständen – Kontrastüber-höhungen an Grenzflächen auf Grund von Interferenzen ausprägen, ist der Phasenkontrastbei der Gitterinterferometrie nur indirekt durch Verwendung mehrerer Gitter messbar. Neben dem Phasenkontrast ermöglicht die Gitterinterferometrie den Zugang zu einem weiteren Kontrastmodus, dem sogenannten Dunkelfeldkontrast, welcher ein Maß für die Streuung von Röntgenstrahlen an einer Probe darstellt.
Diese beiden Bildgebungsmethoden im Zusammenhang mit einem neuartigen Konzept vonLaborröntgenquellen, der Flüssigmetallanodenröhre, bilden den Kern dieser Arbeit. Im Vergleich zu herkömmlichen Röntgenquellen bietet die Flüssigmetallanodenröhre eine höhere Brillanz. Der Begriff der Brillanz ist definiert durch die Anzahl von Röntgenphotonen pro Sekunde, emittierender Fläche (Fläche des Röntgenbrennflecks) und Raumwinkel, unter dem diese abgestrahlt werden.
Auf Basis einer solchen Quelle wurde im Rahmen dieser Arbeit ein hochauflösender propagationsbasierter Phasenkontrastaufbau mitentwickelt. Ausgewählte Anwendungsbeispiele zeigen die Machbarkeit dieser Bildgebungsmethode und die Verbesserung der Bildqualität durch Anwendung von Phasenrückgewinnungsalgorithmen.
Des Weiteren wird die Entwicklung einer Optimierung der Probenposition für den In-line Phasenkontrast behandelt, mit dem Ziel, die Kontrastüberhöhungen zu maximieren. Anhand experimenteller Überprüfung an Fasern erwies sich diese Optimierung als gute Näherung.
Mit ihrer hohen Brillanz und räumlichen Kohärenz ist die Flüssigmetallanodenröhre eine vielversprechende Röntgenquelle für den Einsatz an einem Gitterinterferometer, weshalb auch die Entwicklung eines solchen Aufbaus im Fokus der Arbeit stand. Neben der Präsentation des Gesamtkonzepts und der Charakterisierung des Systems konnten die Anwendbarkeit aber auch die Grenzen dieses Aufbaus zur Untersuchung verschiedenster Materialiengezeigt werden.
Auf Grund des sehr speziellen Gesamtkonzepts des Gitterinterferometers gelang es, ein abgewandeltes Interferometersystem mit nur einem Gitter zu realisieren. Dessen Konzeption und Ergebnisse werden im Rahmen dieser Arbeit ebenfalls dargestellt.
Des Weiteren wurde ein Gitterinterferometer unter Verwendung einer Mikrofokusröntgenquelle hinsichtlich seiner Eigenschaften erprobt. Dabei wurden Systemparameter wie Anodenmaterial, Aufnahmegeometrie und Gitter variiert, um sowohl Vor- als auch Nachteile einer jeden Konfiguration zu finden. |
---|