Studies on the influence of platelets on vascular integrity in primary tumors and the role of BIN2 in platelet calcium signaling

Maintenance of tumor vasculature integrity is indispensable for tumor growth and thus affects tumor progression. Previous studies have identified platelets as major regulators of tumor vascular integrity, as their depletion selectively renders tumor vessels highly permeable, causing massive intratum...

Full description

Bibliographic Details
Main Author: Volz, Julia
Format: Doctoral Thesis
Language:English
Published: 2020
Subjects:
Online Access:https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/21742
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217427
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-217427
https://doi.org/10.25972/OPUS-21742
https://opus.bibliothek.uni-wuerzburg.de/files/21742/Volz_Julia_Dissertation.pdf
id ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-21742
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Thrombozyt
Primärtumor
Maus
ddc:570
spellingShingle Thrombozyt
Primärtumor
Maus
ddc:570
Volz, Julia
Studies on the influence of platelets on vascular integrity in primary tumors and the role of BIN2 in platelet calcium signaling
description Maintenance of tumor vasculature integrity is indispensable for tumor growth and thus affects tumor progression. Previous studies have identified platelets as major regulators of tumor vascular integrity, as their depletion selectively renders tumor vessels highly permeable, causing massive intratumoral hemorrhage. While these results establish platelets as potential targets for anti-tumor therapy, depletion is not a treatment option due to the essential role of platelets for hemostasis. This thesis demonstrates for the first time that functional inhibition of glycoprotein (GP) VI on the platelet surface rapidly induces tumor hemorrhage and diminishes tumor growth similar to complete platelet depletion but without inducing systemic bleeding complications. Both, the intratumoral bleeding and tumor growth arrest could be reverted by depletion of Ly6G+ cells confirming them to be responsible for the induction of bleeding and necrosis within the tumor. In addition, GPVI inhibition increased intra-tumoral accumulation of co-administered chemotherapeutic agents, thereby resulting in a profound anti-tumor effect. In summary, this thesis manifests platelet GPVI as a key regulator of vascular integrity specifically in growing tumors, serving as a potential basis for the development of anti-tumor strategies. In the second part of this thesis, light is shed on the modulating role of bridging integrator 2 (BIN2) in platelet Ca2+ signaling. Stromal interaction molecule 1 (STIM1) mediated store-operated calcium entry (SOCE) is the major route of Ca2+ influx in platelets, triggered by inositol trisphosphate receptor (IP3R)-dependent Ca2+ store release. In this thesis, the BAR domain superfamily member BIN2 was identified as the first Ca2+ signaling modulator, interacting with both, STIM1 and IP3R in platelets. Deletion of BIN2 resulted in reduced Ca2+ store release and Ca2+ influx in response to all tested platelet agonists. These defects were a consequence of impaired IP3R function in combination with defective STIM1-mediated SOC channel activation, while Ca2+ store content and agonist-induced IP3 production were unaltered. These results establish BIN2 as a central regulator of platelet Ca2+ signaling. The third part of this thesis focuses on the effect of the soluble neuronal guidance protein Sema7A on platelet function. Rosenberger et al. discovered that Sema7A cleavage from red blood cells increases the formation of platelet-neutrophil complexes, thereby reinforcing thrombo-inflammation in myocardial ischemia-reperfusion injury (MIRI). This thesis establishes soluble Sema7A as a stimulator of platelet thrombus formation via its interaction with platelet GPIbα, thereby reinforcing PNC formation. Thus, interfering with the GPIb-Sema7A interaction during MIRI represents a potential strategy to reduce cardiac damage and improve clinical outcome following MI. === Die Aufrechterhaltung einer intakten Gefäßstruktur im Primärtumor ist unerlässlich für dessen Wachstum und beeinflusst dadurch die Tumorentwicklung. Es wurde bereits gezeigt, dass Thrombozyten bei diesem Prozess eine große Rolle spielen, da ihre experimentelle Depletion in Mäusen zu extrem durchlässigen Gefäßen und in Folge dessen zu starken Blutungen im Tumor führt. Diese Ergebnisse machen Thrombozyten zu potentiellen Angriffspunkten in der Krebstherapie, eine komplette Depletion ist dabei jedoch auf Grund ihrer essentiellen Funktion bei der Hämostase nicht denkbar. In dieser Thesis wurde zum ersten Mal gezeigt, dass auch die Blockade des Glykoproteins (GP) VI auf der Thrombozytenoberfläche zu vergleichbaren Blutungen im Tumor und zur Hemmung des Tumorwachstums führt, ohne jedoch das generelle Blutungsrisiko zu beeinflussen. Die durch die GPVI Blockade induzierten Effekte können durch eine gleichzeitige Depletion von Ly6G+ Zellen verhindert werden, was zeigt, dass dieser Zelltyp ursächlich an der Entstehung der Blutung beteiligt ist. Des Weiteren führt die Blockade von GPVI in Kombination mit einem Chemotherapeutikum zu einer Erhöhung dessen Konzentration im Tumorgewebe und damit zu einer verstärkten antitumoralen Wirkung. Zusammenfassend konnte gezeigt werden, dass GPVI ein wichtiger Regulator der Gefäßintegrität im wachsenden Tumor ist, was als Grundlage für die Entwicklung von Krebstherapien genutzt werden könnte. Im zweiten Teil dieser Thesis wurde die Rolle des bridging integrator 2 (BIN2) im Ca2+ Signalweg von Thrombozyten untersucht. Der STIM1 abhängige „store operated calcium entry“ (SOCE) vermittelt den größten Ca2+-Einstrom in Thrombozyten. SOCE wird durch den inositol trisphosphate receptor (IP3R)-abhängigen Ca2+ Ausstrom aus dem zelleigenen Ca2+ Reservoir aktiviert. In dieser Thesis wurde BIN2 als erstes Adapterprotein im Ca2+ Signalweg von Thrombozyten identifiziert, das sowohl mit STIM1 als auch mit IP3R interagiert. Das Fehlen von BIN2 führt zu einer Reduktion des Ca2+ Ausstroms aus dem zelleigenen Ca2+ Reservoir und eine Verminderung des Einstroms von extrazellulärem Ca2+. Diesen Defekten liegen die Beeinträchtigungen der Funktion sowohl des IP3R als auch von STIM1 zugrunde, während die Ca2+ Menge im Reservoir und die Agonisten-induzierte IP3 Produktion unverändert bleiben. Zusammenfassend konnte BIN2 als zentrales Molekül im Ca2+ Signalweg von Thrombozyten etabliert werden. Der dritte Teil der Thesis befasst sich mit dem Effekt des löslichen „neuronal guidance protein“ Sema7A auf Thrombozyten. Die Arbeitsgruppe um Prof. Rosenberger konnte bereits zeigen, dass das von Erythrozyten abgespaltene Sema7A die Bildung von Komplexen aus Thrombozyten und Neutrophilen (PNC) fördert und damit die Thrombo-Inflammation während Zusammenfassung III des Ischämie/Reperfusionsschadens des Myokards (MIRI) begünstigt. In dieser Thesis konnte gezeigt werden, dass die Interaktion des löslichen Sema7A mit GPIbα auf der Thrombozytenoberfläche die Thrombenbildung fördert und über diesen Mechanismus auch die PNC Bildung und somit Thrombo-Inflammation verstärkt. Aufgrund dessen stellt der Eingriff in die GPIbα-Sema7a Interaktion eine potentielle Strategie dar, den Gewebeschaden während des MIRI zu reduzieren und damit den Schaden nach einem Myokardinfarkt einzugrenzen.
author Volz, Julia
author_facet Volz, Julia
author_sort Volz, Julia
title Studies on the influence of platelets on vascular integrity in primary tumors and the role of BIN2 in platelet calcium signaling
title_short Studies on the influence of platelets on vascular integrity in primary tumors and the role of BIN2 in platelet calcium signaling
title_full Studies on the influence of platelets on vascular integrity in primary tumors and the role of BIN2 in platelet calcium signaling
title_fullStr Studies on the influence of platelets on vascular integrity in primary tumors and the role of BIN2 in platelet calcium signaling
title_full_unstemmed Studies on the influence of platelets on vascular integrity in primary tumors and the role of BIN2 in platelet calcium signaling
title_sort studies on the influence of platelets on vascular integrity in primary tumors and the role of bin2 in platelet calcium signaling
publishDate 2020
url https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/21742
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217427
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-217427
https://doi.org/10.25972/OPUS-21742
https://opus.bibliothek.uni-wuerzburg.de/files/21742/Volz_Julia_Dissertation.pdf
work_keys_str_mv AT volzjulia studiesontheinfluenceofplateletsonvascularintegrityinprimarytumorsandtheroleofbin2inplateletcalciumsignaling
AT volzjulia studienzumeinflussvonthrombozytenaufdiegefaßintegritatimprimartumorundzurrollevonbin2imcalciumsignalwegvonthrombozyten
_version_ 1719373606461374464
spelling ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-217422021-01-19T05:24:23Z Studies on the influence of platelets on vascular integrity in primary tumors and the role of BIN2 in platelet calcium signaling Studien zum Einfluss von Thrombozyten auf die Gefäßintegrität im Primärtumor und zur Rolle von BIN2 im Calcium-Signalweg von Thrombozyten Volz, Julia Thrombozyt Primärtumor Maus ddc:570 Maintenance of tumor vasculature integrity is indispensable for tumor growth and thus affects tumor progression. Previous studies have identified platelets as major regulators of tumor vascular integrity, as their depletion selectively renders tumor vessels highly permeable, causing massive intratumoral hemorrhage. While these results establish platelets as potential targets for anti-tumor therapy, depletion is not a treatment option due to the essential role of platelets for hemostasis. This thesis demonstrates for the first time that functional inhibition of glycoprotein (GP) VI on the platelet surface rapidly induces tumor hemorrhage and diminishes tumor growth similar to complete platelet depletion but without inducing systemic bleeding complications. Both, the intratumoral bleeding and tumor growth arrest could be reverted by depletion of Ly6G+ cells confirming them to be responsible for the induction of bleeding and necrosis within the tumor. In addition, GPVI inhibition increased intra-tumoral accumulation of co-administered chemotherapeutic agents, thereby resulting in a profound anti-tumor effect. In summary, this thesis manifests platelet GPVI as a key regulator of vascular integrity specifically in growing tumors, serving as a potential basis for the development of anti-tumor strategies. In the second part of this thesis, light is shed on the modulating role of bridging integrator 2 (BIN2) in platelet Ca2+ signaling. Stromal interaction molecule 1 (STIM1) mediated store-operated calcium entry (SOCE) is the major route of Ca2+ influx in platelets, triggered by inositol trisphosphate receptor (IP3R)-dependent Ca2+ store release. In this thesis, the BAR domain superfamily member BIN2 was identified as the first Ca2+ signaling modulator, interacting with both, STIM1 and IP3R in platelets. Deletion of BIN2 resulted in reduced Ca2+ store release and Ca2+ influx in response to all tested platelet agonists. These defects were a consequence of impaired IP3R function in combination with defective STIM1-mediated SOC channel activation, while Ca2+ store content and agonist-induced IP3 production were unaltered. These results establish BIN2 as a central regulator of platelet Ca2+ signaling. The third part of this thesis focuses on the effect of the soluble neuronal guidance protein Sema7A on platelet function. Rosenberger et al. discovered that Sema7A cleavage from red blood cells increases the formation of platelet-neutrophil complexes, thereby reinforcing thrombo-inflammation in myocardial ischemia-reperfusion injury (MIRI). This thesis establishes soluble Sema7A as a stimulator of platelet thrombus formation via its interaction with platelet GPIbα, thereby reinforcing PNC formation. Thus, interfering with the GPIb-Sema7A interaction during MIRI represents a potential strategy to reduce cardiac damage and improve clinical outcome following MI. Die Aufrechterhaltung einer intakten Gefäßstruktur im Primärtumor ist unerlässlich für dessen Wachstum und beeinflusst dadurch die Tumorentwicklung. Es wurde bereits gezeigt, dass Thrombozyten bei diesem Prozess eine große Rolle spielen, da ihre experimentelle Depletion in Mäusen zu extrem durchlässigen Gefäßen und in Folge dessen zu starken Blutungen im Tumor führt. Diese Ergebnisse machen Thrombozyten zu potentiellen Angriffspunkten in der Krebstherapie, eine komplette Depletion ist dabei jedoch auf Grund ihrer essentiellen Funktion bei der Hämostase nicht denkbar. In dieser Thesis wurde zum ersten Mal gezeigt, dass auch die Blockade des Glykoproteins (GP) VI auf der Thrombozytenoberfläche zu vergleichbaren Blutungen im Tumor und zur Hemmung des Tumorwachstums führt, ohne jedoch das generelle Blutungsrisiko zu beeinflussen. Die durch die GPVI Blockade induzierten Effekte können durch eine gleichzeitige Depletion von Ly6G+ Zellen verhindert werden, was zeigt, dass dieser Zelltyp ursächlich an der Entstehung der Blutung beteiligt ist. Des Weiteren führt die Blockade von GPVI in Kombination mit einem Chemotherapeutikum zu einer Erhöhung dessen Konzentration im Tumorgewebe und damit zu einer verstärkten antitumoralen Wirkung. Zusammenfassend konnte gezeigt werden, dass GPVI ein wichtiger Regulator der Gefäßintegrität im wachsenden Tumor ist, was als Grundlage für die Entwicklung von Krebstherapien genutzt werden könnte. Im zweiten Teil dieser Thesis wurde die Rolle des bridging integrator 2 (BIN2) im Ca2+ Signalweg von Thrombozyten untersucht. Der STIM1 abhängige „store operated calcium entry“ (SOCE) vermittelt den größten Ca2+-Einstrom in Thrombozyten. SOCE wird durch den inositol trisphosphate receptor (IP3R)-abhängigen Ca2+ Ausstrom aus dem zelleigenen Ca2+ Reservoir aktiviert. In dieser Thesis wurde BIN2 als erstes Adapterprotein im Ca2+ Signalweg von Thrombozyten identifiziert, das sowohl mit STIM1 als auch mit IP3R interagiert. Das Fehlen von BIN2 führt zu einer Reduktion des Ca2+ Ausstroms aus dem zelleigenen Ca2+ Reservoir und eine Verminderung des Einstroms von extrazellulärem Ca2+. Diesen Defekten liegen die Beeinträchtigungen der Funktion sowohl des IP3R als auch von STIM1 zugrunde, während die Ca2+ Menge im Reservoir und die Agonisten-induzierte IP3 Produktion unverändert bleiben. Zusammenfassend konnte BIN2 als zentrales Molekül im Ca2+ Signalweg von Thrombozyten etabliert werden. Der dritte Teil der Thesis befasst sich mit dem Effekt des löslichen „neuronal guidance protein“ Sema7A auf Thrombozyten. Die Arbeitsgruppe um Prof. Rosenberger konnte bereits zeigen, dass das von Erythrozyten abgespaltene Sema7A die Bildung von Komplexen aus Thrombozyten und Neutrophilen (PNC) fördert und damit die Thrombo-Inflammation während Zusammenfassung III des Ischämie/Reperfusionsschadens des Myokards (MIRI) begünstigt. In dieser Thesis konnte gezeigt werden, dass die Interaktion des löslichen Sema7A mit GPIbα auf der Thrombozytenoberfläche die Thrombenbildung fördert und über diesen Mechanismus auch die PNC Bildung und somit Thrombo-Inflammation verstärkt. Aufgrund dessen stellt der Eingriff in die GPIbα-Sema7a Interaktion eine potentielle Strategie dar, den Gewebeschaden während des MIRI zu reduzieren und damit den Schaden nach einem Myokardinfarkt einzugrenzen. 2020 doctoralthesis doc-type:doctoralThesis application/pdf https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/21742 urn:nbn:de:bvb:20-opus-217427 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-217427 https://doi.org/10.25972/OPUS-21742 https://opus.bibliothek.uni-wuerzburg.de/files/21742/Volz_Julia_Dissertation.pdf eng https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php info:eu-repo/semantics/openAccess