Complexity and Entanglement in the AdS/CFT Correspondence
The AdS/CFT correspondence is an explicit realization of the holographic principle. It describes a field theory living on the boundary of a volume by a gravitational theory living in the interior and vice-versa. With its origins in string theory, the correspondence incorporates an explicit relations...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/21226 http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212265 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-212265 https://doi.org/10.25972/OPUS-21226 https://opus.bibliothek.uni-wuerzburg.de/files/21226/Miekley_Nina_Dissertation.pdf |
id |
ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-21226 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
AdS-CFT-Korrespondenz ddc:539 |
spellingShingle |
AdS-CFT-Korrespondenz ddc:539 Miekley, Nina Complexity and Entanglement in the AdS/CFT Correspondence |
description |
The AdS/CFT correspondence is an explicit realization of the holographic principle. It describes a field theory living on the boundary of a volume by a gravitational theory living in the interior and vice-versa. With its origins in string theory, the correspondence incorporates an explicit relationship between the degrees of freedom of both theories: the AdS/CFT dictionary. One astonishing aspect of the AdS/CFT correspondence is the emergence of geometry from field theory.
On the gravity side, a natural way to probe the geometry is to study boundary-anchored extremal surfaces of different dimensionality. While there is no unified way to determine the field theory dual for such non-local quantities, the AdS/CFT dictionary contains entries for surfaces of certain dimensionality: it relates two-point functions to geodesics, the Wilson loop expectation value to two-dimensional surfaces and the entanglement entropy, i.e. a measure for entanglement between states in a region and in its complement, to co-dimension two surfaces in the bulk.
In this dissertation, we calculate these observables for gravity setups dual to thermal states in the field theory. The geometric dual is given by AdS Schwarzschild black holes in general dimensions. We find analytic results for minimal areas in this setup. One focus of our analysis is the high-temperature limit. The leading and subleading term in this limit have diverse interpretation for the different observables. For example, the subleading term of the entanglement entropy satisfies a c-theorem for renormalization flows and gives insights into the number of effective degrees of freedom.
The entanglement entropy emerged as the favorable way to probe the geometric dual. In addition to the extremal bulk surface, the holographic entanglement entropy associates a bulk region to the considered boundary region. The volume of this region is conjectured to be a measure of complexity, i.e. a measure of how difficult it is to obtain the corresponding field-theory state. Building on our aforementioned results for the entanglement entropy, we study this complexity for AdS Schwarzschild black holes in general dimensions.
In particular, we draw conclusions on how efficient holography encodes the field theory and compare these results to MERA tensor networks, a numerical tool to study quantum many-body systems.
Moreover, we holographically study the complexity of pure states. This sheds light on the notion of complexity in field theories. We calculate the complexity for a simple, calculable example: states obtained by conformal transformations of the vacuum state in AdS3/CFT2. In this lower-dimensional realization of AdS/CFT, the conformal group is infinite dimensional. We construct a continuous space of states with the same complexity as the vacuum state. Furthermore, we determine the change of complexity caused by small conformal transformation. The field-theory operator implementing this transformation is known and allows to compare the holographic results to field theory expectations. === Die AdS/CFT Korrespondenz ist ein explizites Beispiel für das holographische Prinzip. Es beschreibt eine Feldtheorie auf dem Rand eines Volumens durch eine Theorie mit Gravitation im Inneren und vice-versa. Aus dem Ursprung in der Stringtheorie folgt ein expliziter Zusammenhang zwischen den Freiheitsgraden beider Theorien: das AdS/CFT Lexikon. Ein verblüffender Aspekt der AdS/CFT Korrespondenz ist die Entstehung der Geometrie aus der Feldtheorie.
Ein natürlicher Weg um die Geometrie auf der Gravitationsseite zu untersuchen sind extremale Flächen, die am Rand verankert sind. Es gibt keinen einheitlichen Weg um die duale Größe in der Feldtheorie für solche nichtlokalen Größen zu bestimmen, jedoch gibt es für Flächen bestimmer Dimension Einträge im AdS/CFT Lexikon: es bringt Zweipunktfunktionen mit Geodäten, Wilson loops mit zweidimensionalen Flächen und die Verschränkungsentropie, ein Maß für Verschränkung zwischen einer Region und ihrem Komplement, mit Flächen der Kodimension zwei in Verbindung.
In dieser Dissertation untersuchen wir diese Observablen für Geometrien dual zu thermischen Zuständen in der Feldtheorien. Die duale Geometrien sind AdS Schwarzschild schwarze Löcher in allgemeiner Raumzeitdimension. Wir erhalten analytische Ergebnisse. Ein Fokus liegt auf das Verhalten bei hoher Temperatur. Die in diesem Limit dominanten Terme haben vielfältige Interpretationen für die unterschiedlichen Observablen. Der Term zweiter Ordnung für die Verschränkungsentropie erfüllt zum Beispiel ein c-Theorem für Renormalizisierungsgruppen und gibt daher Aufschlüsse über die Anzahl der effektiven Freiheitsgrade.
Die Verschränkungsentropie stellt sich als erfolgreicher Weg heraus um die duale Geometrie zu untersuchen. Neben der extremalen Fläche bringt die holographische Verschränkungsentropie auch eine Raumregion zu der gegebenen Randregion in Verbindung. Das Volumen dieser Raumregion wird als Maß für die Komplexität, ein Maß für den Schwierigkeitsgrad den entsprechenden Zustand in der Feldtheorie zu konstruieren, angesehen. Wir berechnen dieses Volumen für AdS Schwarzschild aufbauend auf unseren oben erwähnten Ergebnissen zu der Verschränkungsentropie. Wir ziehen Rückschlüsse wie effektiv Holographie die Feldtheorie beschreibt und vergleichen diese Ergebnisse zu MERA Tensornetzwerken, einer numerische Methode um Vielteilchensysteme zu beschreiben.
Anschließend betrachten wir die Komplexität von reinen Zuständen holographisch. Dies gibt Einblicke in das Konzept von Komplexität in Feldtheorien. Wir untersuchen die Komplexität für ein einfaches, berechenbares Beispiel: Zustände erzeugt von konformen Transformationen des Vakuumzustandes in AdS3/CFT2. Die konforme Gruppe hat unendlich viele Dimensionen in diesem niedrig dimensionalen Beispiel von AdS/CFT. Wir konstruieren ein kontinuierliches Raum von Zuständen mit gleicher Komplexität wie der Vakuumzustand. Außerdem bestimmen wir die Änderung der Komplexität für kleine konforme Transformationen. Der Operator in der Feldtheorie ist bekannt und erlaubt uns unsere Ergebnisse zu Feldtheorieerwartungen zu vergleichen. |
author |
Miekley, Nina |
author_facet |
Miekley, Nina |
author_sort |
Miekley, Nina |
title |
Complexity and Entanglement in the AdS/CFT Correspondence |
title_short |
Complexity and Entanglement in the AdS/CFT Correspondence |
title_full |
Complexity and Entanglement in the AdS/CFT Correspondence |
title_fullStr |
Complexity and Entanglement in the AdS/CFT Correspondence |
title_full_unstemmed |
Complexity and Entanglement in the AdS/CFT Correspondence |
title_sort |
complexity and entanglement in the ads/cft correspondence |
publishDate |
2020 |
url |
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/21226 http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212265 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-212265 https://doi.org/10.25972/OPUS-21226 https://opus.bibliothek.uni-wuerzburg.de/files/21226/Miekley_Nina_Dissertation.pdf |
work_keys_str_mv |
AT miekleynina complexityandentanglementintheadscftcorrespondence AT miekleynina komplexitatundverschrankunginderadscftkorrespondenz |
_version_ |
1719371007630770176 |
spelling |
ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-212262020-12-19T05:19:19Z Complexity and Entanglement in the AdS/CFT Correspondence Komplexität und Verschränkung in der AdS/CFT Korrespondenz Miekley, Nina AdS-CFT-Korrespondenz ddc:539 The AdS/CFT correspondence is an explicit realization of the holographic principle. It describes a field theory living on the boundary of a volume by a gravitational theory living in the interior and vice-versa. With its origins in string theory, the correspondence incorporates an explicit relationship between the degrees of freedom of both theories: the AdS/CFT dictionary. One astonishing aspect of the AdS/CFT correspondence is the emergence of geometry from field theory. On the gravity side, a natural way to probe the geometry is to study boundary-anchored extremal surfaces of different dimensionality. While there is no unified way to determine the field theory dual for such non-local quantities, the AdS/CFT dictionary contains entries for surfaces of certain dimensionality: it relates two-point functions to geodesics, the Wilson loop expectation value to two-dimensional surfaces and the entanglement entropy, i.e. a measure for entanglement between states in a region and in its complement, to co-dimension two surfaces in the bulk. In this dissertation, we calculate these observables for gravity setups dual to thermal states in the field theory. The geometric dual is given by AdS Schwarzschild black holes in general dimensions. We find analytic results for minimal areas in this setup. One focus of our analysis is the high-temperature limit. The leading and subleading term in this limit have diverse interpretation for the different observables. For example, the subleading term of the entanglement entropy satisfies a c-theorem for renormalization flows and gives insights into the number of effective degrees of freedom. The entanglement entropy emerged as the favorable way to probe the geometric dual. In addition to the extremal bulk surface, the holographic entanglement entropy associates a bulk region to the considered boundary region. The volume of this region is conjectured to be a measure of complexity, i.e. a measure of how difficult it is to obtain the corresponding field-theory state. Building on our aforementioned results for the entanglement entropy, we study this complexity for AdS Schwarzschild black holes in general dimensions. In particular, we draw conclusions on how efficient holography encodes the field theory and compare these results to MERA tensor networks, a numerical tool to study quantum many-body systems. Moreover, we holographically study the complexity of pure states. This sheds light on the notion of complexity in field theories. We calculate the complexity for a simple, calculable example: states obtained by conformal transformations of the vacuum state in AdS3/CFT2. In this lower-dimensional realization of AdS/CFT, the conformal group is infinite dimensional. We construct a continuous space of states with the same complexity as the vacuum state. Furthermore, we determine the change of complexity caused by small conformal transformation. The field-theory operator implementing this transformation is known and allows to compare the holographic results to field theory expectations. Die AdS/CFT Korrespondenz ist ein explizites Beispiel für das holographische Prinzip. Es beschreibt eine Feldtheorie auf dem Rand eines Volumens durch eine Theorie mit Gravitation im Inneren und vice-versa. Aus dem Ursprung in der Stringtheorie folgt ein expliziter Zusammenhang zwischen den Freiheitsgraden beider Theorien: das AdS/CFT Lexikon. Ein verblüffender Aspekt der AdS/CFT Korrespondenz ist die Entstehung der Geometrie aus der Feldtheorie. Ein natürlicher Weg um die Geometrie auf der Gravitationsseite zu untersuchen sind extremale Flächen, die am Rand verankert sind. Es gibt keinen einheitlichen Weg um die duale Größe in der Feldtheorie für solche nichtlokalen Größen zu bestimmen, jedoch gibt es für Flächen bestimmer Dimension Einträge im AdS/CFT Lexikon: es bringt Zweipunktfunktionen mit Geodäten, Wilson loops mit zweidimensionalen Flächen und die Verschränkungsentropie, ein Maß für Verschränkung zwischen einer Region und ihrem Komplement, mit Flächen der Kodimension zwei in Verbindung. In dieser Dissertation untersuchen wir diese Observablen für Geometrien dual zu thermischen Zuständen in der Feldtheorien. Die duale Geometrien sind AdS Schwarzschild schwarze Löcher in allgemeiner Raumzeitdimension. Wir erhalten analytische Ergebnisse. Ein Fokus liegt auf das Verhalten bei hoher Temperatur. Die in diesem Limit dominanten Terme haben vielfältige Interpretationen für die unterschiedlichen Observablen. Der Term zweiter Ordnung für die Verschränkungsentropie erfüllt zum Beispiel ein c-Theorem für Renormalizisierungsgruppen und gibt daher Aufschlüsse über die Anzahl der effektiven Freiheitsgrade. Die Verschränkungsentropie stellt sich als erfolgreicher Weg heraus um die duale Geometrie zu untersuchen. Neben der extremalen Fläche bringt die holographische Verschränkungsentropie auch eine Raumregion zu der gegebenen Randregion in Verbindung. Das Volumen dieser Raumregion wird als Maß für die Komplexität, ein Maß für den Schwierigkeitsgrad den entsprechenden Zustand in der Feldtheorie zu konstruieren, angesehen. Wir berechnen dieses Volumen für AdS Schwarzschild aufbauend auf unseren oben erwähnten Ergebnissen zu der Verschränkungsentropie. Wir ziehen Rückschlüsse wie effektiv Holographie die Feldtheorie beschreibt und vergleichen diese Ergebnisse zu MERA Tensornetzwerken, einer numerische Methode um Vielteilchensysteme zu beschreiben. Anschließend betrachten wir die Komplexität von reinen Zuständen holographisch. Dies gibt Einblicke in das Konzept von Komplexität in Feldtheorien. Wir untersuchen die Komplexität für ein einfaches, berechenbares Beispiel: Zustände erzeugt von konformen Transformationen des Vakuumzustandes in AdS3/CFT2. Die konforme Gruppe hat unendlich viele Dimensionen in diesem niedrig dimensionalen Beispiel von AdS/CFT. Wir konstruieren ein kontinuierliches Raum von Zuständen mit gleicher Komplexität wie der Vakuumzustand. Außerdem bestimmen wir die Änderung der Komplexität für kleine konforme Transformationen. Der Operator in der Feldtheorie ist bekannt und erlaubt uns unsere Ergebnisse zu Feldtheorieerwartungen zu vergleichen. 2020 doctoralthesis doc-type:doctoralThesis application/pdf https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/21226 urn:nbn:de:bvb:20-opus-212265 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-212265 https://doi.org/10.25972/OPUS-21226 https://opus.bibliothek.uni-wuerzburg.de/files/21226/Miekley_Nina_Dissertation.pdf eng https://creativecommons.org/licenses/by/4.0/deed.de info:eu-repo/semantics/openAccess |