Data-driven Operations Management: From Predictive to Prescriptive Analytics

Autonomous cars and artificial intelligence that beats humans in Jeopardy or Go are glamorous examples of the so-called Second Machine Age that involves the automation of cognitive tasks [Brynjolfsson and McAfee, 2014]. However, the larger impact in terms of increasing the efficiency of industry and...

Full description

Bibliographic Details
Main Author: Taigel, Fabian Michael
Format: Doctoral Thesis
Language:English
Published: 2020
Subjects:
Online Access:https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/20651
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206514
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-206514
https://opus.bibliothek.uni-wuerzburg.de/files/20651/Taigel_Fabian_Dissertation.pdf
id ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-20651
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Maschinelles Lernen
Operations Management
Bestandsplanung
Kapazitätsplanung
ddc:338
spellingShingle Maschinelles Lernen
Operations Management
Bestandsplanung
Kapazitätsplanung
ddc:338
Taigel, Fabian Michael
Data-driven Operations Management: From Predictive to Prescriptive Analytics
description Autonomous cars and artificial intelligence that beats humans in Jeopardy or Go are glamorous examples of the so-called Second Machine Age that involves the automation of cognitive tasks [Brynjolfsson and McAfee, 2014]. However, the larger impact in terms of increasing the efficiency of industry and the productivity of society might come from computers that improve or take over business decisions by using large amounts of available data. This impact may even exceed that of the First Machine Age, the industrial revolution that started with James Watt’s invention of an efficient steam engine in the late eighteenth century. Indeed, the prevalent phrase that calls data “the new oil” indicates the growing awareness of data’s importance. However, many companies, especially those in the manufacturing and traditional service industries, still struggle to increase productivity using the vast amounts of data [for Economic Co-operation and Development, 2018]. One reason for this struggle is that companies stick with a traditional way of using data for decision support in operations management that is not well suited to automated decision-making. In traditional inventory and capacity management, some data – typically just historical demand data – is used to estimate a model that makes predictions about uncertain planning parameters, such as customer demand. The planner then has two tasks: to adjust the prediction with respect to additional information that was not part of the data but still might influence demand and to take the remaining uncertainty into account and determine a safety buffer based on the underage and overage costs. In the best case, the planner determines the safety buffer based on an optimization model that takes the costs and the distribution of historical forecast errors into account; however, these decisions are usually based on a planner’s experience and intuition, rather than on solid data analysis. This two-step approach is referred to as separated estimation and optimization (SEO). With SEO, using more data and better models for making the predictions would improve only the first step, which would still improve decisions but would not automize (and, hence, revolutionize) decision-making. Using SEO is like using a stronger horse to pull the plow: one still has to walk behind. The real potential for increasing productivity lies in moving from predictive to prescriptive approaches, that is, from the two-step SEO approach, which uses predictive models in the estimation step, to a prescriptive approach, which integrates the optimization problem with the estimation of a model that then provides a direct functional relationship between the data and the decision. Following Akcay et al. [2011], we refer to this integrated approach as joint estimation-optimization (JEO). JEO approaches prescribe decisions, so they can automate the decision-making process. Just as the steam engine replaced manual work, JEO approaches replace cognitive work. The overarching objective of this dissertation is to analyze, develop, and evaluate new ways for how data can be used in making planning decisions in operations management to unlock the potential for increasing productivity. In doing so, the thesis comprises five self-contained research articles that forge the bridge from predictive to prescriptive approaches. While the first article focuses on how sensitive data like condition data from machinery can be used to make predictions of spare-parts demand, the remaining articles introduce, analyze, and discuss prescriptive approaches to inventory and capacity management. All five articles consider approach that use machine learning and data in innovative ways to improve current approaches to solving inventory or capacity management problems. The articles show that, by moving from predictive to prescriptive approaches, we can improve data-driven operations management in two ways: by making decisions more accurate and by automating decision-making. Thus, this dissertation provides examples of how digitization and the Second Machine Age can change decision-making in companies to increase efficiency and productivity. === Diese Dissertation besteht aus fünf inhaltlich abgeschlossenen Teilen, die ein übergeordnetes Thema zur Grundlage haben: Wie können Daten genutzt werden, um bessere Bestands- und Kapazitätsplanung zu ermöglichen? Durch die zunehmende Digitalisierung stehen in verschiedensten Wirtschaftsbereichen mehr und mehr Daten zur Verfügung, die zur besseren Planung der Betriebsabläufe genutzt werden können. Historische Nachfragedaten, Sensordaten, Preisinformationen und Daten zu Werbemaßnahmen, sowie frei verfügbare Daten wie z.B. Wettervorhersagen, Daten zu Schulferien, regionalen Events, Daten aus den Sozialen Medien oder anderen Quellen enthalten potentiell relevante Informationen, werden aber häufig noch nicht zur Entscheidungsunterstützung genutzt. Im ersten Artikel, ”Privacy-preserving condition-based forecasting using machine learning”, wird aufgezeigt, wie sensitive Zustandsdaten zur Nachfragevorhersage von Ersatzteilbedarfen nutzbar gemacht werden können. Es wird ein Modell entwickelt, das es erlaubt, Vorhersagen auf verschlüsselten Zustandsdaten zu erstellen. Dies ist z.B. in der Luftfahrt relevant, wo Dienstleister für die Wartung und Ersatzteilversorgung von Flugzeugen verschiedener Airlines zuständig sind. Da die Airlines befürchten, dass Wettbewerber an sensitive Echtzeitdaten gelangen können, werden diese Daten dem Wartungsdienstleister nicht im Klartext zur Verfügung gestellt. Die Ergebnisse des implementierten Prototyps zeigen, dass eine schnelle Auswertung maschineller Lernverfahren auch auf großen Datenmengen, die verschlüsselt in einer SAP HANA Datenbank gespeichert sind, möglich ist. Die Artikel zwei und drei behandeln innovative, datengetriebene Ansätze zur Bestandsplanung. Der zweite Artikel ”Machine learning for inventory management: “Analyzing two concepts to get from data to decisions” analysiert zwei Ansätze, die Konzepte des maschinellen Lernens nutzen um aus historischen Daten Bestandsentscheidungen zu lernen. Im dritten Artikel, ”Machine learning for inventory management: Analyzing two concepts to get from data to decisions”, wird ein neues Modell zur integrierten Bestandsoptimierung entwickelt und mit einem Referenzmodell verglichen, bei dem die Schätzung eines Vorhersagemodells und die Optimierung der Bestandsentscheidung separiert sind. Der wesentliche Beitrag zur Forschung ist hierbei die Erkenntnis, dass unter bestimmten Bedingungen der integrierte Ansatz klar bessere Ergebnisse liefert und so Kosten durch Unter- bzw. Überbestände deutlich gesenkt werden können. In den Artikeln vier und fünf werden neue datengetriebene Ansätze zur Kapazitätsplanung vorgestellt und umfassend analysiert. Im vierten Artikel ”Datadriven capacity management with machine learning: A new approach and a case-study for a public service office wird ein datengetriebenes Verfahren zur Kapazitätsplanung eingeführt und auf das Planungsproblem in einem Bürgeramt angewandt. Das Besondere hierbei ist, dass die spezifische Zielfunktion (maximal 20% der Kunden sollen länger als 20 Minuten warten müssen) direkt in ein maschinelles Lernverfahren integriert wird, womit dann ein Entscheidungsmodell aus historischen Daten gelernt werden kann. Hierbei wird gezeigt, dass mit dem integrierten Ansatz die Häufigkeit langer Wartezeiten bei gleichem Ressourceneinsatz deutlich reduziert werden kann. Im fünften Artikel, ”Prescriptive call center staffing”, wird ein Modell zur integrierten Kapazitätsoptimierung für ein Call Center entwickelt. Hier besteht die Innovation darin, dass die spezifische Kostenfunktion eines Call Centers in ein maschinelles Lernverfahren integriert wird. Die Ergebnisse für Daten von zwei Call Centern zeigen, dass mit dem neuentwickelten Verfahren, die Kosten im Vergleich zu dem gängigen Referenzmodell aus der Literatur deutlich gesenkt werden können.
author Taigel, Fabian Michael
author_facet Taigel, Fabian Michael
author_sort Taigel, Fabian Michael
title Data-driven Operations Management: From Predictive to Prescriptive Analytics
title_short Data-driven Operations Management: From Predictive to Prescriptive Analytics
title_full Data-driven Operations Management: From Predictive to Prescriptive Analytics
title_fullStr Data-driven Operations Management: From Predictive to Prescriptive Analytics
title_full_unstemmed Data-driven Operations Management: From Predictive to Prescriptive Analytics
title_sort data-driven operations management: from predictive to prescriptive analytics
publishDate 2020
url https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/20651
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206514
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-206514
https://opus.bibliothek.uni-wuerzburg.de/files/20651/Taigel_Fabian_Dissertation.pdf
work_keys_str_mv AT taigelfabianmichael datadrivenoperationsmanagementfrompredictivetoprescriptiveanalytics
AT taigelfabianmichael datenbasiertesoperationsmanagementvonpradiktivenzupraskriptivenverfahren
_version_ 1719327897372590080
spelling ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-206512020-07-15T07:09:31Z Data-driven Operations Management: From Predictive to Prescriptive Analytics Datenbasiertes Operations Management: Von prädiktiven zu präskriptiven Verfahren Taigel, Fabian Michael Maschinelles Lernen Operations Management Bestandsplanung Kapazitätsplanung ddc:338 Autonomous cars and artificial intelligence that beats humans in Jeopardy or Go are glamorous examples of the so-called Second Machine Age that involves the automation of cognitive tasks [Brynjolfsson and McAfee, 2014]. However, the larger impact in terms of increasing the efficiency of industry and the productivity of society might come from computers that improve or take over business decisions by using large amounts of available data. This impact may even exceed that of the First Machine Age, the industrial revolution that started with James Watt’s invention of an efficient steam engine in the late eighteenth century. Indeed, the prevalent phrase that calls data “the new oil” indicates the growing awareness of data’s importance. However, many companies, especially those in the manufacturing and traditional service industries, still struggle to increase productivity using the vast amounts of data [for Economic Co-operation and Development, 2018]. One reason for this struggle is that companies stick with a traditional way of using data for decision support in operations management that is not well suited to automated decision-making. In traditional inventory and capacity management, some data – typically just historical demand data – is used to estimate a model that makes predictions about uncertain planning parameters, such as customer demand. The planner then has two tasks: to adjust the prediction with respect to additional information that was not part of the data but still might influence demand and to take the remaining uncertainty into account and determine a safety buffer based on the underage and overage costs. In the best case, the planner determines the safety buffer based on an optimization model that takes the costs and the distribution of historical forecast errors into account; however, these decisions are usually based on a planner’s experience and intuition, rather than on solid data analysis. This two-step approach is referred to as separated estimation and optimization (SEO). With SEO, using more data and better models for making the predictions would improve only the first step, which would still improve decisions but would not automize (and, hence, revolutionize) decision-making. Using SEO is like using a stronger horse to pull the plow: one still has to walk behind. The real potential for increasing productivity lies in moving from predictive to prescriptive approaches, that is, from the two-step SEO approach, which uses predictive models in the estimation step, to a prescriptive approach, which integrates the optimization problem with the estimation of a model that then provides a direct functional relationship between the data and the decision. Following Akcay et al. [2011], we refer to this integrated approach as joint estimation-optimization (JEO). JEO approaches prescribe decisions, so they can automate the decision-making process. Just as the steam engine replaced manual work, JEO approaches replace cognitive work. The overarching objective of this dissertation is to analyze, develop, and evaluate new ways for how data can be used in making planning decisions in operations management to unlock the potential for increasing productivity. In doing so, the thesis comprises five self-contained research articles that forge the bridge from predictive to prescriptive approaches. While the first article focuses on how sensitive data like condition data from machinery can be used to make predictions of spare-parts demand, the remaining articles introduce, analyze, and discuss prescriptive approaches to inventory and capacity management. All five articles consider approach that use machine learning and data in innovative ways to improve current approaches to solving inventory or capacity management problems. The articles show that, by moving from predictive to prescriptive approaches, we can improve data-driven operations management in two ways: by making decisions more accurate and by automating decision-making. Thus, this dissertation provides examples of how digitization and the Second Machine Age can change decision-making in companies to increase efficiency and productivity. Diese Dissertation besteht aus fünf inhaltlich abgeschlossenen Teilen, die ein übergeordnetes Thema zur Grundlage haben: Wie können Daten genutzt werden, um bessere Bestands- und Kapazitätsplanung zu ermöglichen? Durch die zunehmende Digitalisierung stehen in verschiedensten Wirtschaftsbereichen mehr und mehr Daten zur Verfügung, die zur besseren Planung der Betriebsabläufe genutzt werden können. Historische Nachfragedaten, Sensordaten, Preisinformationen und Daten zu Werbemaßnahmen, sowie frei verfügbare Daten wie z.B. Wettervorhersagen, Daten zu Schulferien, regionalen Events, Daten aus den Sozialen Medien oder anderen Quellen enthalten potentiell relevante Informationen, werden aber häufig noch nicht zur Entscheidungsunterstützung genutzt. Im ersten Artikel, ”Privacy-preserving condition-based forecasting using machine learning”, wird aufgezeigt, wie sensitive Zustandsdaten zur Nachfragevorhersage von Ersatzteilbedarfen nutzbar gemacht werden können. Es wird ein Modell entwickelt, das es erlaubt, Vorhersagen auf verschlüsselten Zustandsdaten zu erstellen. Dies ist z.B. in der Luftfahrt relevant, wo Dienstleister für die Wartung und Ersatzteilversorgung von Flugzeugen verschiedener Airlines zuständig sind. Da die Airlines befürchten, dass Wettbewerber an sensitive Echtzeitdaten gelangen können, werden diese Daten dem Wartungsdienstleister nicht im Klartext zur Verfügung gestellt. Die Ergebnisse des implementierten Prototyps zeigen, dass eine schnelle Auswertung maschineller Lernverfahren auch auf großen Datenmengen, die verschlüsselt in einer SAP HANA Datenbank gespeichert sind, möglich ist. Die Artikel zwei und drei behandeln innovative, datengetriebene Ansätze zur Bestandsplanung. Der zweite Artikel ”Machine learning for inventory management: “Analyzing two concepts to get from data to decisions” analysiert zwei Ansätze, die Konzepte des maschinellen Lernens nutzen um aus historischen Daten Bestandsentscheidungen zu lernen. Im dritten Artikel, ”Machine learning for inventory management: Analyzing two concepts to get from data to decisions”, wird ein neues Modell zur integrierten Bestandsoptimierung entwickelt und mit einem Referenzmodell verglichen, bei dem die Schätzung eines Vorhersagemodells und die Optimierung der Bestandsentscheidung separiert sind. Der wesentliche Beitrag zur Forschung ist hierbei die Erkenntnis, dass unter bestimmten Bedingungen der integrierte Ansatz klar bessere Ergebnisse liefert und so Kosten durch Unter- bzw. Überbestände deutlich gesenkt werden können. In den Artikeln vier und fünf werden neue datengetriebene Ansätze zur Kapazitätsplanung vorgestellt und umfassend analysiert. Im vierten Artikel ”Datadriven capacity management with machine learning: A new approach and a case-study for a public service office wird ein datengetriebenes Verfahren zur Kapazitätsplanung eingeführt und auf das Planungsproblem in einem Bürgeramt angewandt. Das Besondere hierbei ist, dass die spezifische Zielfunktion (maximal 20% der Kunden sollen länger als 20 Minuten warten müssen) direkt in ein maschinelles Lernverfahren integriert wird, womit dann ein Entscheidungsmodell aus historischen Daten gelernt werden kann. Hierbei wird gezeigt, dass mit dem integrierten Ansatz die Häufigkeit langer Wartezeiten bei gleichem Ressourceneinsatz deutlich reduziert werden kann. Im fünften Artikel, ”Prescriptive call center staffing”, wird ein Modell zur integrierten Kapazitätsoptimierung für ein Call Center entwickelt. Hier besteht die Innovation darin, dass die spezifische Kostenfunktion eines Call Centers in ein maschinelles Lernverfahren integriert wird. Die Ergebnisse für Daten von zwei Call Centern zeigen, dass mit dem neuentwickelten Verfahren, die Kosten im Vergleich zu dem gängigen Referenzmodell aus der Literatur deutlich gesenkt werden können. 2020 doctoralthesis doc-type:doctoralThesis application/pdf https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/20651 urn:nbn:de:bvb:20-opus-206514 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-206514 https://opus.bibliothek.uni-wuerzburg.de/files/20651/Taigel_Fabian_Dissertation.pdf eng https://creativecommons.org/licenses/by-sa/4.0/deed.de EU (FP7/ 2007-2013) info:eu-repo/semantics/openAccess