A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors

The culture of human induced pluripotent stem cells (hiPSCs) at large-scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Suspension cul- tures of hiPSCs are characterized by the self-aggregation of single cells into macroscopic cell aggre...

Full description

Bibliographic Details
Main Author: Schwedhelm, Ivo Peter
Format: Doctoral Thesis
Language:English
Published: 2019
Subjects:
Online Access:https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/19298
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192989
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-192989
https://opus.bibliothek.uni-wuerzburg.de/files/19298/Schwedhelm_Ivo_Microscopy_Platform.pdf
id ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-19298
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic iPSC
Mikroskopie
Bioreaktor
Aggregation
ddc:570
spellingShingle iPSC
Mikroskopie
Bioreaktor
Aggregation
ddc:570
Schwedhelm, Ivo Peter
A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors
description The culture of human induced pluripotent stem cells (hiPSCs) at large-scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Suspension cul- tures of hiPSCs are characterized by the self-aggregation of single cells into macroscopic cell aggre- gates that increase in size over time. The development of these free-floating aggregates is dependent on the culture vessel and thus represents a novel process parameter that is of particular interest for hiPSC suspension culture scaling. Further, aggregates surpassing a critical size are prone to spon- taneous differentiation or cell viability loss. In this regard, and, for the first time, a hiPSC-specific suspension culture unit was developed that utilizes in situ microscope imaging to monitor and to characterize hiPSC aggregation in one specific CSTR setup to a statistically significant degree while omitting the need for error-prone and time-intensive sampling. For this purpose, a small-scale CSTR system was designed and fabricated by fused deposition modeling (FDM) using an in-house 3D- printer. To provide a suitable cell culture environment for the CSTR system and in situ microscope, a custom-built incubator was constructed to accommodate all culture vessels and process control devices. Prior to manufacture, the CSTR design was characterized in silico for standard engineering parameters such as the specific power input, mixing time, and shear stress using computational fluid dynamics (CFD) simulations. The established computational model was successfully validated by comparing CFD-derived mixing time data to manual measurements. Proof for system functionality was provided in the context of long-term expansion (4 passages) of hiPSCs. Thereby, hiPSC aggregate size development was successfully tracked by in situ imaging of CSTR suspensions and subsequent automated image processing. Further, the suitability of the developed hiPSC culture unit was proven by demonstrating the preservation of CSTR-cultured hiPSC pluripotency on RNA level by qRT-PCR and PluriTest, and on protein level by flow cytometry. === Die Vermehrung von humanen induzierten pluripotenten Stammzellen (hiPSCs) im Indus- triemaßstab wird durch skalierbare Bioprozesse in aktiv durchmischten Rührkessel-Bioreaktoren (CSTRs) ermöglicht. Hierbei zeichnet sich das Wachstum von hiPSCs durch die charakteristische Bildung von sphäroidischen Zellaggregaten aus, deren Durchmesser sich im Laufe der Kultivierung vergrößert. Die Agglomeration von hiPSCs ist sowohl abhängig vom Grad der Durchmischung als auch vom jeweiligen Kulturgefäß, und stellt somit einen wichtigen Prozessparameter dar, welcher während der Prozessskalierung berücksichtigt werden muss. Weiterhin weisen hiPSCs in Aggregaten, welche eine kritische Größe überschreiten, eine erhöhte Wahrscheinlichkeit auf, ihre Pluripotenz zu verlieren oder hinsichtlich ihrer Viabilität beeinträchtigt zu werden. Auf Grundlage dessen wurde im Rahmen dieser Arbeit eine Plattform für die Durchführung von hiPSCs-Suspensionskulturen en- twickelt, welche die zerstörungsfreie Überwachung des hiPSC-Aggregatwachstums in Echtzeit durch den Einsatz von in situ-Mikroskopie ermöglicht. Neben den eigens entworfenen Bioreaktoren, welche zum Großteil aus 3D-gedruckten Komponenten bestehen, wurde eine Peripherie in Form eines Inkubator-Prototyps entwickelt und konstruiert, welcher die Unterbringung der Bioreaktoren, der Systemkomponenten zur Erzeugung von Zellkulturbedingungen sowie einer in situ-Mikroskop- Spezialanfertigung gewährleistet. Als Ausgangspunkt der Entwicklung des CSTR Systems diente ein Strömungssimulationsmodell, welches dazu verwendet wurde, prozesstechnische Kennzahlen zu er- mitteln um das CSTR System hinsichtlich des spezifischen Leistungseintrags, der Mischzeit und der Scherbelastung zu charakterisieren. Das erstellte Simulationsmodell wurde zudem erfolgreich an- hand eines Messdatenabgleichs der Mischzeit hinsichtlich seiner Aussagekraft validiert. Des Weit- eren wurde die Funktionsfähigkeit des gesamten Systems durch Langzeitversuche belegt. Hierbei wurden hiPSCs in den entwickelten Bioreaktoren über einen Zeitraum von vier Passagen expandiert und das Aggregatwachstum mittels in situ-Mikroskopie in Kombination mit einer automatisierten Bildauswertung beschrieben. Überdies hinaus wurde die Qualität der kultivierten hiPSCs hinsichtlich ihrer Differenzierungskapazität durch den Nachweis von Pluripotenzmarkern auf RNA (qRT-PCR und PluriTest) sowie Proteinebene (Durchflusszytometrie) untersucht.
author Schwedhelm, Ivo Peter
author_facet Schwedhelm, Ivo Peter
author_sort Schwedhelm, Ivo Peter
title A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors
title_short A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors
title_full A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors
title_fullStr A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors
title_full_unstemmed A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors
title_sort non-invasive microscopy platform for the online monitoring of hipsc aggregation in suspension cultures in small-scale stirred tank bioreactors
publishDate 2019
url https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/19298
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192989
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-192989
https://opus.bibliothek.uni-wuerzburg.de/files/19298/Schwedhelm_Ivo_Microscopy_Platform.pdf
work_keys_str_mv AT schwedhelmivopeter anoninvasivemicroscopyplatformfortheonlinemonitoringofhipscaggregationinsuspensionculturesinsmallscalestirredtankbioreactors
AT schwedhelmivopeter entwicklungundetablierungeinermikroskopieplattformzurzerstorungsfreienmessungderaggregierungvonhipscsinkleinmaßstabigenbioreaktorsuspensionskulturen
AT schwedhelmivopeter noninvasivemicroscopyplatformfortheonlinemonitoringofhipscaggregationinsuspensionculturesinsmallscalestirredtankbioreactors
_version_ 1719310338573205504
spelling ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-192982020-01-29T03:32:24Z A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors Entwicklung und Etablierung einer Mikroskopieplattform zur zerstörungsfreien Messung der Aggregierung von hiPSCs in kleinmaßstäbigen Bioreaktor-Suspensionskulturen Schwedhelm, Ivo Peter iPSC Mikroskopie Bioreaktor Aggregation ddc:570 The culture of human induced pluripotent stem cells (hiPSCs) at large-scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Suspension cul- tures of hiPSCs are characterized by the self-aggregation of single cells into macroscopic cell aggre- gates that increase in size over time. The development of these free-floating aggregates is dependent on the culture vessel and thus represents a novel process parameter that is of particular interest for hiPSC suspension culture scaling. Further, aggregates surpassing a critical size are prone to spon- taneous differentiation or cell viability loss. In this regard, and, for the first time, a hiPSC-specific suspension culture unit was developed that utilizes in situ microscope imaging to monitor and to characterize hiPSC aggregation in one specific CSTR setup to a statistically significant degree while omitting the need for error-prone and time-intensive sampling. For this purpose, a small-scale CSTR system was designed and fabricated by fused deposition modeling (FDM) using an in-house 3D- printer. To provide a suitable cell culture environment for the CSTR system and in situ microscope, a custom-built incubator was constructed to accommodate all culture vessels and process control devices. Prior to manufacture, the CSTR design was characterized in silico for standard engineering parameters such as the specific power input, mixing time, and shear stress using computational fluid dynamics (CFD) simulations. The established computational model was successfully validated by comparing CFD-derived mixing time data to manual measurements. Proof for system functionality was provided in the context of long-term expansion (4 passages) of hiPSCs. Thereby, hiPSC aggregate size development was successfully tracked by in situ imaging of CSTR suspensions and subsequent automated image processing. Further, the suitability of the developed hiPSC culture unit was proven by demonstrating the preservation of CSTR-cultured hiPSC pluripotency on RNA level by qRT-PCR and PluriTest, and on protein level by flow cytometry. Die Vermehrung von humanen induzierten pluripotenten Stammzellen (hiPSCs) im Indus- triemaßstab wird durch skalierbare Bioprozesse in aktiv durchmischten Rührkessel-Bioreaktoren (CSTRs) ermöglicht. Hierbei zeichnet sich das Wachstum von hiPSCs durch die charakteristische Bildung von sphäroidischen Zellaggregaten aus, deren Durchmesser sich im Laufe der Kultivierung vergrößert. Die Agglomeration von hiPSCs ist sowohl abhängig vom Grad der Durchmischung als auch vom jeweiligen Kulturgefäß, und stellt somit einen wichtigen Prozessparameter dar, welcher während der Prozessskalierung berücksichtigt werden muss. Weiterhin weisen hiPSCs in Aggregaten, welche eine kritische Größe überschreiten, eine erhöhte Wahrscheinlichkeit auf, ihre Pluripotenz zu verlieren oder hinsichtlich ihrer Viabilität beeinträchtigt zu werden. Auf Grundlage dessen wurde im Rahmen dieser Arbeit eine Plattform für die Durchführung von hiPSCs-Suspensionskulturen en- twickelt, welche die zerstörungsfreie Überwachung des hiPSC-Aggregatwachstums in Echtzeit durch den Einsatz von in situ-Mikroskopie ermöglicht. Neben den eigens entworfenen Bioreaktoren, welche zum Großteil aus 3D-gedruckten Komponenten bestehen, wurde eine Peripherie in Form eines Inkubator-Prototyps entwickelt und konstruiert, welcher die Unterbringung der Bioreaktoren, der Systemkomponenten zur Erzeugung von Zellkulturbedingungen sowie einer in situ-Mikroskop- Spezialanfertigung gewährleistet. Als Ausgangspunkt der Entwicklung des CSTR Systems diente ein Strömungssimulationsmodell, welches dazu verwendet wurde, prozesstechnische Kennzahlen zu er- mitteln um das CSTR System hinsichtlich des spezifischen Leistungseintrags, der Mischzeit und der Scherbelastung zu charakterisieren. Das erstellte Simulationsmodell wurde zudem erfolgreich an- hand eines Messdatenabgleichs der Mischzeit hinsichtlich seiner Aussagekraft validiert. Des Weit- eren wurde die Funktionsfähigkeit des gesamten Systems durch Langzeitversuche belegt. Hierbei wurden hiPSCs in den entwickelten Bioreaktoren über einen Zeitraum von vier Passagen expandiert und das Aggregatwachstum mittels in situ-Mikroskopie in Kombination mit einer automatisierten Bildauswertung beschrieben. Überdies hinaus wurde die Qualität der kultivierten hiPSCs hinsichtlich ihrer Differenzierungskapazität durch den Nachweis von Pluripotenzmarkern auf RNA (qRT-PCR und PluriTest) sowie Proteinebene (Durchflusszytometrie) untersucht. 2019 doctoralthesis doc-type:doctoralThesis application/pdf https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/19298 urn:nbn:de:bvb:20-opus-192989 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-192989 https://opus.bibliothek.uni-wuerzburg.de/files/19298/Schwedhelm_Ivo_Microscopy_Platform.pdf eng https://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php info:eu-repo/semantics/openAccess