Pathogenese von Kraniosynostosen

Das humane Schädeldach besteht aus fünf Schädelplatten, die durch intramembranöse Ossifikation entstehen. Wenn diese in der Embryonalentwicklung aufeinandertreffen, bilden sich Schädelnähte aus, die eine Fusion der Schädelplatten verhindern und damit ein Schädelwachstum parallel zu Gehirnentwicklung...

Full description

Bibliographic Details
Main Author: König, Eva-Maria
Format: Doctoral Thesis
Language:deu
Published: 2019
Subjects:
Online Access:https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/17518
http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175181
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-175181
https://opus.bibliothek.uni-wuerzburg.de/files/17518/Koenig_EvaMaria_Dissertation.pdf
Description
Summary:Das humane Schädeldach besteht aus fünf Schädelplatten, die durch intramembranöse Ossifikation entstehen. Wenn diese in der Embryonalentwicklung aufeinandertreffen, bilden sich Schädelnähte aus, die eine Fusion der Schädelplatten verhindern und damit ein Schädelwachstum parallel zu Gehirnentwicklung ermöglichen. Für diesen Prozess ist eine Balance aus Zellproliferation und Differenzierung nötig, deren Aufrechterhaltung wiederum durch eine komplexe Regulation von verschiedenen Signalwegen gewährleistet wird. Störungen in diesem regulatorischen System können zu einer vorzeitigen Fusion der Schädelplatten, Kraniosynostose genannt, führen. Die Kraniosynostose ist eine der häufigsten kraniofazialen Fehlbildungen beim Menschen. Durch kompensatorisches Wachstum an den nicht fusionierten Suturen entstehen charakteristische Schädeldeformationen, die sekundär einen erhöhten intrakranialen Druck zur Folge haben können. Eine vorzeitige Fusion der Suturen kann sowohl isoliert als auch syndromal zusammen mit weiteren klinischen Auffälligkeiten vorliegen. Bisher sind über 150 verschiedene Kraniosynostose Syndrome beschrieben und insgesamt 25-30% aller Kraniosynostose Patienten sind von einer syndromalen Form betroffen. Da die klinischen Merkmale der Kraniosynostose Syndrome variabel sind und zum Teil überlappen, ist eine klare klinische Diagnose häufig erschwert. Sowohl Umwelteinflüsse als auch genetische Veränderungen können die Ursache für Kraniosynostosen sein. Vor allem bei syndromalen Kraniosynostosen wurden genetische Veränderungen, wie beispielsweise Mutationen in den Genen FGFR2, FGFR3, TWIST1 und EFNB1, identifiziert. Darüber hinaus wurden chromosomale Veränderungen wie partielle Monosomien von 7p, 9p oder 11p sowie partielle Trisomien von 5q, 13q oder 15q mit Kraniosynostose assoziiert. Trotzdem ist in über 50% der Fälle die genetische Ursache unbekannt und die Pathogenese von Kraniosynostosen noch nicht vollständig geklärt. Ziel dieser Arbeit war es neue genetische Ursachen bei Kraniosynostose Patienten zu identifizieren und so zur Aufklärung der Pathogenese beizutragen. Es wurde die genomische DNA von 83 Patienten molekulargenetisch durch Mikroarray basierte vergleichende Genomhybridisierung (Array-CGH) oder durch ein speziell entworfenes Next Generation Sequencing (NGS) Genpanel untersucht. Bei 30% der Patienten konnte eine potentiell pathogene Veränderung identifiziert werden. Davon waren 23% chromosomale Aberrationen wie unbalancierte Translokationen, isolierte interstitielle Verluste und ein Zugewinn an genomischen Material. Bei zwei Patienten wurden unbalancierte Translokationen mit partieller 5q Trisomie nachgewiesen. Das Gen MSX2 liegt innerhalb des duplizierten Bereichs, sodass möglicherweise eine MSX2 Überexpression vorliegt. Für ein normales Schädelwachstum ist jedoch die richtige Menge an MSX2 kritisch. Des Weiteren wurde eine partielle Deletion von TCF12 detektiert, die in einer Haploinsuffizienz von TCF12 resultiert. TCF12 Mutationen sind mit Koronarnahtsynosten assoziiert. In einem anderen Fall lag das Gen FGF10 innerhalb der duplizierten 5p15.1-p12 Region. Das Gen kodiert für einen Liganden des FGF Signalwegs und wurde bisher noch nicht mit Kraniosynostose assoziiert. Aufgrund dessen wurden Analysen im Tiermodell Danio rerio durchgeführt. Eine simulierte Überexpression durch Injektion der fgf10a mRNA in das 1-Zell Stadium führte zu schweren Gehirn-, Herz- und Augendefekten. Mittels NGS wurden 77% der potentiell pathogenen genetischen Veränderungen identifiziert. Hierfür wurde in dieser Arbeit ein Genpanel erstellt, das 68 Gene umfasst. Es wurden sowohl bekannte Kraniosynostose- als auch Kandidaten-Gene sowie Gene, die mit der Ossifikation assoziiert sind, in die Analyse eingeschlossen. Das Genpanel wurde durch die Sequenzierung von fünf Kontrollproben mit bekannten Mutationen erfolgreich validiert. Anschließend wurde die genomische DNA von 66 Patienten analysiert. Es konnten 20 (potentiell) pathogene Varianten identifiziert werden. Neben bereits bekannten Mutationen in den Genen FGFR1, FGFR2, FGFR3 und TWIST1, konnten zusätzlich 8 neue, potentiell pathogene Varianten in den Genen ERF, MEGF8, MSX2, PTCH1 und TCF12 identifiziert werden. Die Ergebnisse dieser Arbeit tragen dazu bei das Mutationsspektrum dieser Gene zu erweitern. Bei zwei der Varianten handelte es sich um potentielle Spleißvarianten. Für diese konnte in einem in vitro Spleißsystem gezeigt werden, dass sie eine Änderung des Spleißmusters bewirken. Der Nachweis von zwei seltenen Varianten in den Genen FGFR2 und HUWE1 hat außerdem dazu beigetragen die Pathogenität dieser spezifischen Varianten zu bekräftigen. Eine Variante in POR, die aufgrund bioinformatischer Analysen als potentiell pathogen bewertet wurde, wurde nach der Segregationsanalyse als wahrscheinlich benigne eingestuft. Zusammenfassend konnten bei etwa einem Drittel der Patienten, die mit dem NGS Genpanel analysiert wurden, eine genetische Ursache identifiziert werden. Dieses Genpanel stellt somit ein effizientes diagnostisches Tool dar, das zukünftig in der genetischen Routine-Diagnostik von Kraniosynostose-Patienten eingesetzt werden kann. Die Ergebnisse dieser Arbeit zeigen, dass sowohl eine Untersuchung auf CNVs als auch auf Sequenzänderungen bei Kraniosynostose Patienten sinnvoll ist. === Cranial bones are formed by intramembranous ossification. During development, the cranial bones are separated by fibrous sutures, which function as bone growth sites and therefore, the cranial sutures need to remain patent to allow the expansion of the skull during brain development. Thus, there must be a balance of cell proliferation and differentiation within the suture. This complex process requires a tight regulation of gene expression and interacting signal pathways. Imbalances or dysfunction of the involved factors can result in abnormal skull growth. One of the most common congenital craniofacial disorders by affecting approximately one in 2500 newborns is craniosynostosis. It is defined as the premature ossification of one or more calvarial sutures. Compensatory growth of the skull leads to a characteristic dysmorphic cranial vault and facial asymmetry. Premature ossification of the cranial sutures can occur either as isolated malformation or as part of a syndrome. Isolated craniosynostoses are more frequent, nevertheless, 25-30% of all cases are syndromic craniosynostoses with more than 150 syndromes reported. There is a high intra- and interfamilial variability and clinical overlap of the different syndromes. Environmental influences as well as genetic defects like mutations and chromosomal aberrations are known to cause craniosynostosis. So far genetic causes have been identified mainly for syndromic craniosynostoses, i.e. mutations in FGFR2, FGFR3, TWIST1, and EFNB1. Furthermore, chromosomal rearrangements like i.e. partial monosomy of 7p, 9p, and 11p as well as partial trisomy of 5q, 13q, and 15q, have been reported in 11-15% of the syndromic craniosynostosis cases. However, in more than 50% of the cases the underlying genetic cause remains unknown. Furthermore, the pathogenesis of craniosynostoses is still not fully understood. In this project 83 craniosynostosis patients were analysed either by microarray-based comparative genomic hybridisation (array-CGH) or gene panel based next generation sequencing (NGS) to further investigate the pathogenesis of craniosynostosis. In a total of 30% of the patients a potential genetic cause was identified. Among those 23% had chromosomal rearrangements which are likely to cause the observed phenotypes, i.e. unbalanced translocations affecting several genes as well as interstitial deletions and an isolated duplication have been detected. Two patients had unbalanced translocations with partial 5q trisomies encompassing MSX2. MSX2 gene dosage is critical for normal growth of the cranial bone plates as loss-of-function mutations lead to delayed and incomplete ossification of the parietal bones. Furthermore, we identified a partial TCF12 deletion which is likely to result in TCF12 haploinsufficiency. TCF12 mutations frequently lead to premature fusion of the coronal sutures, although its pathogenesis is still not fully understood. In another case isolated duplication of 5p15.1-p12 includes FGF10 which is a known ligand of the FGF signalling pathway. So far, no association of FGF10 with craniosynostosis has been made. To investigate its potential role during development and in the pathogenesis of craniosynostosis functional experiments were performed in Danio rerio, an animal model for craniosynostosis. Simulation of fgf10a overexpression by injection of fgf10a RNA at 1-cell stage resulted in severe anomalies of the brain, heart and eyes. In addition, 77% of the identified genetic causes were detected by NGS. For this study a gene panel was designed comprising 68 genes of known and candidate craniosynostosis genes as well as genes associated with bone development. Performance of the NGS gene panel was validated by sequencing five control patients with known mutations. Subsequently, genomic DNA of 66 patients was analysed by the designed craniosynostosis panel. 20 (potential) pathogenic variants were detected. Although, in most of the cases hot spot sequencing of one or more common craniosynostosis genes was performed prior to including the patients in the study, we determined 9 known mutations in the genes FGFR1, FGFR2, FGFR3, and TWIST1. In addition, 8 novel, potentially disease-causing variants in the genes ERF, MEGF8, MSX2, PTCH1, and TCF12 were identified. This work contributed to extend the mutational spectrum within those genes. Two of those variants were predicted to affect splice sites. Analysis by an in vitro splice assay revealed that those variants result in aberrant splicing. Furthermore, the detection of two rare variants of FGFR2 and HUWE1 adds support to their pathogenicity. An additional variant within POR had to be classified as likely benign after segregation analysis. Overall, in nearly one third of the analysed cases an underlying genetic cause could be identified by the designed gene panel. Thus, the NGS panel presents as an efficient tool for genetic diagnostics of craniosynostoses. The data of this work clearly show both copy number variant and single nucleotide variant analysis should be considered in genetic diagnostics of craniosynostosis patients.