Towards an understanding of the intricate interaction network of TFIIH
The integrity of its DNA is fundamental for every living cell. However, DNA is constantly threatened by exogenous and endogenous damaging agents that can cause a variety of different DNA lesions. The severe consequences of an accumulation of DNA lesions are reflected in cancerogenesis and aging. Sev...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/16892 http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168926 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-168926 https://doi.org/10.25972/OPUS-16892 https://opus.bibliothek.uni-wuerzburg.de/files/16892/Schoenwetter_Elisabeth_TFIIH.pdf |
id |
ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-16892 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
DNS-Reparatur Röntgenkristallographie Strukturbiologie ddc:572 |
spellingShingle |
DNS-Reparatur Röntgenkristallographie Strukturbiologie ddc:572 Schönwetter, Elisabeth Sofie Towards an understanding of the intricate interaction network of TFIIH |
description |
The integrity of its DNA is fundamental for every living cell. However, DNA is constantly threatened by exogenous and endogenous damaging agents that can cause a variety of different DNA lesions. The severe consequences of an accumulation of DNA lesions are reflected in cancerogenesis and aging. Several DNA repair mechanisms ensure the repair of DNA lesions and thus maintain DNA integrity. One of these DNA repair mechanisms is nucleotide excision repair (NER), which is famous for its ability to address a large variety of structurally unrelated DNA lesions. A key component of eukaryotic NER is the transcription factor II H (TFIIH) complex, which is not only essential for DNA repair but also for transcription. The TFIIH complex is composed of ten subunits. How these subunits work together during NER to unwind the DNA around the lesion is, however, not yet fully understood. High-resolution structural data and biochemical insights into the function of every subunit are thus indispensable to understand the functional networks within TFIIH. The importance of an intact TFIIH complex is reflected in the severe consequences of patient mutations in the TFIIH subunits XPB, XPD or p8 leading to the hallmark diseases xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Defects in the NER pathway are further associated with several types of cancer including skin cancer.
The herein described work focused on five TFIIH subunits derived from the thermophilic fungus Chaetomium thermophilum, the p34/p44 pair and the ternary XPB/p52/p8 complex. The interaction between p34 and p44 was characterized based on a high-resolution structure of the p34_vWA/p44_RING minimal complex. Biochemical studies of the p34/p44 interaction led to the disclosure of an additional interaction between the p34 and p44 subunits, which had not been characterized so far. The p34/p44 interaction was shown to be central to TFIIH, which justifies the presence of several redundant interfaces to safeguard the interaction between the two proteins and might explain why so far, no patient mutations in these subunits have been identified. The p52 subunit of TFIIH was known to be crucial to stimulate the ATPase activity of XPB, which is required during NER. This work presents the first entire atomic resolution structural characterization of p52, which was derived of several crystal structures of p52 variants and a p52/p8 variant thereby demonstrating the interaction between p52 and p8. The precise structural model of p52 offered the possibility to investigate interactions with other TFIIH subunits in more detail. The middle domain 2 of p52 and the N-terminal domain of XPB were shown to mediate the main interaction between the two subunits. An analysis of the p52 crystal structures within recently published cryo-electron microscopy structures of TFIIH provides a model of how p52 and p8 stimulate the ATPase activity of XPB, which is essential for NER and transcription. The structural and biochemical findings of this work provide an additional building block towards the uncovering of the architecture and function of this essential transcription factor. === Die Unversehrtheit ihrer DNA ist für jede lebende Zelle elementar. Die DNA ist jedoch fortwährend exogenen und endogenen Toxinen ausgeliefert, die eine Vielfalt unterschiedlicher DNA-Schäden verursachen. Die sehr ernsthaften Konsequenzen einer Anhäufung von DNA-Schäden spiegeln sich in der Entstehung von Tumorerkrankungen und Alterung wider. Verschiedene DNA-Reparaturmechanismen sorgen für die Reparatur von DNA-Schäden und erhalten so die Unversehrtheit der DNA. Einer dieser DNA-Reparaturmechanismen ist die Nukleotid-Exzisions-Reparatur (NER), die bekannt dafür ist, eine Vielfalt an strukturell unterschiedlichen DNA-Schäden zu adressieren. Eine Schlüsselkomponente der eukaryotischen NER ist der Transkriptionsfaktor II H (TFIIH), welcher nicht nur für die DNA-Reparatur, sondern auch für die Transkription essentiell ist. Der TFIIH Komplex besteht aus zehn Untereinheiten. Wie diese Untereinheiten zusammenarbeiten, um die DNA um den Schaden herum zu entwinden, ist jedoch noch nicht hinreichend bekannt. Hochaufgelöste Strukturdaten und biochemische Einblicke in die Funktion jeder Untereinheit sind daher unabkömmlich, um das funktionelle Netzwerk innerhalb dieses Transkriptionsfaktors zu verstehen. Die Bedeutung eines intakten TFIIH Komplexes spiegelt sich in den verheerenden Folgen von Patientenmutationen in den TFIIH Untereinheiten XPB, XPD oder p8 wider, die zu den kennzeichnenden Krankheitsbildern von Xeroderma Pigmentosum, Cockayne Syndrom und Trichothiodystrophie führen. Ein fehlerhafter NER Reparaturweg ist ferner mit einigen Krebsarten wie Hautkrebs assoziiert.
Die hier beschriebene Arbeit hat sich auf fünf TFIIH Untereinheiten konzentriert, die aus dem thermophilen Pilz Chaetomium thermophilum stammen, das p34/p44 Heterodimer und der ternäre XPB/p52/p8 Komplex. Die Interaktion zwischen p34 und p44 wurde basierend auf einer hochaufgelösten Kristallstruktur des p34_vWA/p44_RING Minimalkomplexes charakterisiert. Biochemische Studien der p34/p44 Interaktion haben zur Aufdeckung einer weiteren Interaktion zwischen p34 und p44 geführt, die bisher noch nicht charakterisiert wurde. Die p34/p44 Interaktion ist von zentraler Bedeutung für TFIIH, was die Gegenwart mehrerer redundanter Schnittstellen zwischen p34 und p44, um die p34/p44 Interaktion abzusichern, rechtfertigt und erklären könnte, warum bislang keine Patientenmutationen in diesen Untereinheiten identifiziert wurden. Die p52 Untereinheit von TFIIH ist bekannt dafür, die ATPase-Aktivität von XPB zu stimulieren, die während der NER benötigt wird. Diese Arbeit zeigt die erste vollständige atomare strukturelle Charakterisierung von p52, die aus verschiedenen Kristallstrukturen von p52 Varianten und einer p52/p8 Variante, welche die Interaktion zwischen p52 und p8 darstellt, stammt. Das Strukturmodel von p52 bietet die Möglichkeit Interaktionen mit anderen TFIIH Untereinheiten zu analysieren. Es wurde gezeigt, dass die mittlere Domäne 2 von p52 und die N-terminale Domäne von XPB die hauptsächliche Interaktion zwischen den beiden Untereinheiten vermitteln. Eine Analyse der p52 Kristallstrukturen in neuesten publizierten cryo-Elektronenmikroskopie TFIIH-Strukturen ermöglichte die Erstellung eines Models, das zeigt, wie p52 und p8 die ATPase-Aktivität von XPB stimulieren, welche essentiell für die NER und die Transkription ist. Die strukturellen und biochemischen Erkenntnisse dieser Arbeit bieten einen wichtigen Beitrag zur Enthüllung der Architektur und Funktion von TFIIH, einem essentiellen zellulären Komplex. |
author |
Schönwetter, Elisabeth Sofie |
author_facet |
Schönwetter, Elisabeth Sofie |
author_sort |
Schönwetter, Elisabeth Sofie |
title |
Towards an understanding of the intricate interaction network of TFIIH |
title_short |
Towards an understanding of the intricate interaction network of TFIIH |
title_full |
Towards an understanding of the intricate interaction network of TFIIH |
title_fullStr |
Towards an understanding of the intricate interaction network of TFIIH |
title_full_unstemmed |
Towards an understanding of the intricate interaction network of TFIIH |
title_sort |
towards an understanding of the intricate interaction network of tfiih |
publishDate |
2021 |
url |
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/16892 http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168926 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-168926 https://doi.org/10.25972/OPUS-16892 https://opus.bibliothek.uni-wuerzburg.de/files/16892/Schoenwetter_Elisabeth_TFIIH.pdf |
work_keys_str_mv |
AT schonwetterelisabethsofie towardsanunderstandingoftheintricateinteractionnetworkoftfiih AT schonwetterelisabethsofie aufdemwegzumverstandnisdeskomplexentfiihinteraktionsnetzwerkes |
_version_ |
1719407583761006592 |
spelling |
ndltd-uni-wuerzburg.de-oai-opus.bibliothek.uni-wuerzburg.de-168922021-05-27T05:34:02Z Towards an understanding of the intricate interaction network of TFIIH Auf dem Weg zum Verständnis des komplexen TFIIH Interaktionsnetzwerkes Schönwetter, Elisabeth Sofie DNS-Reparatur Röntgenkristallographie Strukturbiologie ddc:572 The integrity of its DNA is fundamental for every living cell. However, DNA is constantly threatened by exogenous and endogenous damaging agents that can cause a variety of different DNA lesions. The severe consequences of an accumulation of DNA lesions are reflected in cancerogenesis and aging. Several DNA repair mechanisms ensure the repair of DNA lesions and thus maintain DNA integrity. One of these DNA repair mechanisms is nucleotide excision repair (NER), which is famous for its ability to address a large variety of structurally unrelated DNA lesions. A key component of eukaryotic NER is the transcription factor II H (TFIIH) complex, which is not only essential for DNA repair but also for transcription. The TFIIH complex is composed of ten subunits. How these subunits work together during NER to unwind the DNA around the lesion is, however, not yet fully understood. High-resolution structural data and biochemical insights into the function of every subunit are thus indispensable to understand the functional networks within TFIIH. The importance of an intact TFIIH complex is reflected in the severe consequences of patient mutations in the TFIIH subunits XPB, XPD or p8 leading to the hallmark diseases xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Defects in the NER pathway are further associated with several types of cancer including skin cancer. The herein described work focused on five TFIIH subunits derived from the thermophilic fungus Chaetomium thermophilum, the p34/p44 pair and the ternary XPB/p52/p8 complex. The interaction between p34 and p44 was characterized based on a high-resolution structure of the p34_vWA/p44_RING minimal complex. Biochemical studies of the p34/p44 interaction led to the disclosure of an additional interaction between the p34 and p44 subunits, which had not been characterized so far. The p34/p44 interaction was shown to be central to TFIIH, which justifies the presence of several redundant interfaces to safeguard the interaction between the two proteins and might explain why so far, no patient mutations in these subunits have been identified. The p52 subunit of TFIIH was known to be crucial to stimulate the ATPase activity of XPB, which is required during NER. This work presents the first entire atomic resolution structural characterization of p52, which was derived of several crystal structures of p52 variants and a p52/p8 variant thereby demonstrating the interaction between p52 and p8. The precise structural model of p52 offered the possibility to investigate interactions with other TFIIH subunits in more detail. The middle domain 2 of p52 and the N-terminal domain of XPB were shown to mediate the main interaction between the two subunits. An analysis of the p52 crystal structures within recently published cryo-electron microscopy structures of TFIIH provides a model of how p52 and p8 stimulate the ATPase activity of XPB, which is essential for NER and transcription. The structural and biochemical findings of this work provide an additional building block towards the uncovering of the architecture and function of this essential transcription factor. Die Unversehrtheit ihrer DNA ist für jede lebende Zelle elementar. Die DNA ist jedoch fortwährend exogenen und endogenen Toxinen ausgeliefert, die eine Vielfalt unterschiedlicher DNA-Schäden verursachen. Die sehr ernsthaften Konsequenzen einer Anhäufung von DNA-Schäden spiegeln sich in der Entstehung von Tumorerkrankungen und Alterung wider. Verschiedene DNA-Reparaturmechanismen sorgen für die Reparatur von DNA-Schäden und erhalten so die Unversehrtheit der DNA. Einer dieser DNA-Reparaturmechanismen ist die Nukleotid-Exzisions-Reparatur (NER), die bekannt dafür ist, eine Vielfalt an strukturell unterschiedlichen DNA-Schäden zu adressieren. Eine Schlüsselkomponente der eukaryotischen NER ist der Transkriptionsfaktor II H (TFIIH), welcher nicht nur für die DNA-Reparatur, sondern auch für die Transkription essentiell ist. Der TFIIH Komplex besteht aus zehn Untereinheiten. Wie diese Untereinheiten zusammenarbeiten, um die DNA um den Schaden herum zu entwinden, ist jedoch noch nicht hinreichend bekannt. Hochaufgelöste Strukturdaten und biochemische Einblicke in die Funktion jeder Untereinheit sind daher unabkömmlich, um das funktionelle Netzwerk innerhalb dieses Transkriptionsfaktors zu verstehen. Die Bedeutung eines intakten TFIIH Komplexes spiegelt sich in den verheerenden Folgen von Patientenmutationen in den TFIIH Untereinheiten XPB, XPD oder p8 wider, die zu den kennzeichnenden Krankheitsbildern von Xeroderma Pigmentosum, Cockayne Syndrom und Trichothiodystrophie führen. Ein fehlerhafter NER Reparaturweg ist ferner mit einigen Krebsarten wie Hautkrebs assoziiert. Die hier beschriebene Arbeit hat sich auf fünf TFIIH Untereinheiten konzentriert, die aus dem thermophilen Pilz Chaetomium thermophilum stammen, das p34/p44 Heterodimer und der ternäre XPB/p52/p8 Komplex. Die Interaktion zwischen p34 und p44 wurde basierend auf einer hochaufgelösten Kristallstruktur des p34_vWA/p44_RING Minimalkomplexes charakterisiert. Biochemische Studien der p34/p44 Interaktion haben zur Aufdeckung einer weiteren Interaktion zwischen p34 und p44 geführt, die bisher noch nicht charakterisiert wurde. Die p34/p44 Interaktion ist von zentraler Bedeutung für TFIIH, was die Gegenwart mehrerer redundanter Schnittstellen zwischen p34 und p44, um die p34/p44 Interaktion abzusichern, rechtfertigt und erklären könnte, warum bislang keine Patientenmutationen in diesen Untereinheiten identifiziert wurden. Die p52 Untereinheit von TFIIH ist bekannt dafür, die ATPase-Aktivität von XPB zu stimulieren, die während der NER benötigt wird. Diese Arbeit zeigt die erste vollständige atomare strukturelle Charakterisierung von p52, die aus verschiedenen Kristallstrukturen von p52 Varianten und einer p52/p8 Variante, welche die Interaktion zwischen p52 und p8 darstellt, stammt. Das Strukturmodel von p52 bietet die Möglichkeit Interaktionen mit anderen TFIIH Untereinheiten zu analysieren. Es wurde gezeigt, dass die mittlere Domäne 2 von p52 und die N-terminale Domäne von XPB die hauptsächliche Interaktion zwischen den beiden Untereinheiten vermitteln. Eine Analyse der p52 Kristallstrukturen in neuesten publizierten cryo-Elektronenmikroskopie TFIIH-Strukturen ermöglichte die Erstellung eines Models, das zeigt, wie p52 und p8 die ATPase-Aktivität von XPB stimulieren, welche essentiell für die NER und die Transkription ist. Die strukturellen und biochemischen Erkenntnisse dieser Arbeit bieten einen wichtigen Beitrag zur Enthüllung der Architektur und Funktion von TFIIH, einem essentiellen zellulären Komplex. 2021 doctoralthesis doc-type:doctoralThesis application/pdf https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/16892 urn:nbn:de:bvb:20-opus-168926 https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-168926 https://doi.org/10.25972/OPUS-16892 https://opus.bibliothek.uni-wuerzburg.de/files/16892/Schoenwetter_Elisabeth_TFIIH.pdf eng https://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php info:eu-repo/semantics/openAccess |