Summary: | This (cumulative) dissertation is concerned with mechanisms and models of information processing and transmission by individual neurons and small neural assemblies. In this document, I first provide historical context for these ideas and highlight similarities and differences to related concepts from machine learning and neuromorphic engineering. With this background, I then discuss the four main themes of my work, namely dendritic filtering and delays, homeostatic plasticity and adaptation, rate-coding with spiking neurons, and spike-timing based alternatives to rate-coding. The content of this discussion is in large part derived from several of my own publications included in Appendix C, but it has been extended and revised to provide a more accessible and broad explanation of the main ideas, as well as to show their inherent connections. I conclude that fundamental differences remain between our understanding of information processing and transmission in machine learning on the one hand and theoretical neuroscience on the other, which should provide a strong incentive for further interdisciplinary work on the domain boundaries between neuroscience, machine learning and neuromorphic engineering.
|