Quantitative imaging of water flow in soil and roots using neutron radiography and deuterated water
Wo und wie schnell nehmen Wurzeln Wasser auf? Obwohl diese Frage in Pflanzen- und Bodenwissenschaften von großer Bedeutung ist, gibt es nur wenige experimentelle Daten darüber, an welcher Stelle der Wurzeln eine transpirierende Pflanze das Wasser aus dem Boden erhält. Die Antwort auf diese Frage er...
Main Author: | |
---|---|
Other Authors: | |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/11858/00-1735-0000-0001-BBC9-1 http://nbn-resolving.de/urn:nbn:de:gbv:7-11858/00-1735-0000-0001-BBC9-1-4 |
Summary: | Wo und wie schnell nehmen Wurzeln Wasser auf? Obwohl diese Frage in Pflanzen- und Bodenwissenschaften von großer Bedeutung ist, gibt es nur wenige experimentelle Daten darüber, an welcher Stelle der Wurzeln eine transpirierende Pflanze das Wasser aus dem Boden erhält. Die Antwort auf diese Frage erfordert direkte und in-situ Messungen des lokalen Wasserflusses in die Wurzel hinein. Ziel dieser Arbeit war es, eine neue Methode zu entwickeln und anzuwenden, um den lokalen Wasserfluss in unterschiedliche Segmente der Pflanzenwurzeln zu quantifizieren.
Dabei wurde Neutronenradiographie eingesetzt um den Transport von deuteriertem Wasser (D2O) in die Wurzel von Lupinen zu untersuchen.
Die Lupinen wuchsen in Aluminium Containern, die mit sandigem Boden gefüllt waren. Der sandige Boden wurde mit Hilfe von 1cm-dicken Schichten groben Sandes in verschiedene Bereiche eingeteilt. Diese Schichten reduzierten die Diffusion von D2O zwischen den verschiedenen Bereichen. D2O wurde in ausgewählte Bereiche tagsüber (transpiriende Pflanzen) und nachts (nicht transpiriernde Pflanze) injiziert. Transport von D2O in die Wurzeln hinein wurde durch Neutronenradiographie mit einer räumlichen Auflösung von 100 µm in Intervallen von 10 Sekunden aufgezeichnet. Die Messungen zeigten: i) Transport von D2O in die Wurzel hinein war tagsüber schneller als nachst; ii) D2O wurde tagsüber schnell entlang der Wurzel in Richtung Spross transportiert, während dieser axiale Fluss nachts vernachlässigbar war. Die Unterschiede zwischen Tag- und Nachtmessungen wurden durch konvektiven Transport von D2O in den Wurzeln erklärt. Um den effektiven Wasserfluss in die Wurzeln hinein zu quantifizieren, wurde ein einfaches Konvektions-Diffusions Modell entwickelt, wobei die Zunahme der D2O Konzentration in Wurzeln vom konvektiven Transport abhängt und von the Diffusion des D2O in die Wurzeln.
Die Ergebnisse zeigten, dass die Wasseraufnahme nicht gleichmäßig entlang der Wurzel stattfindet. Die Wasseraufnahme war in den oberen Bodenschichten höher als in den tieferen. Entlang einzelner Wurzeln war der radiale Fluss in nahen Teilen der Wurzel höher als in den weiter entfernten Teilen der Wurzel. In Lupinen fand die Wasseraufnahme im Wesentlichen in den lateralen Wurzeln statt. Die Funktion der Pfahlwurzel war es, das Wasser der lateralen Wurzeln zu sammeln und zum Spross zu transportieren. Diese Funktion wird durch eine geringe radiale und eine hohe axiale Leitfähigkeit sichergestellt.
Wir haben diese Technik auch angewandt um den Einfluss der Rhizosphäre auf die Wasseraufnahme zu untersuchen. Wie vor Kurzem auch in der Literatur berichtet wurde, wurde auch in dieser Arbeit beobachtet, dass der Boden in der unmittelbaren Nähe der Wurzeln, der sogenannten Rhizosphäre, hydrophob wird, wenn der Boden trocken wird. Zum ersten Mal konnte gezeigt werden, dass durch die Hydrophobizität der Rhizosphäre die Wasseraufnahme nach Trocknung und folgender Bewässerung reduziert wird. Es wurde die Schlussfolgerung gezogen, dass nach Trocknung die Rhizosphäre einen entscheidenden Wiederstand für den Wasserfluss zur Wurzel darstellt. Das beeinflusst vermutlich auch die Ausdehnung des Bereiches der Wurzeln, in dem Wasser aufgenommen wird.
Die Bedeutung dieser Arbeit ist die Entwicklung einer neuen Methode, um Wasseraufnahme durch Wurzeln lebender Pflanzen lokal zu quantifizieren. Diese Methode macht es möglich quantitativ zu messen, wo und wie schnell Wurzeln Wasser im Boden aufnehmen.
Diese Technik wird es erleichtern, die Funktionsweise der Wurzeln verschiedener Pflanzen zu verstehen und den Einfluss von Wurzelwachstum und wechselnder äußerer Bedingungen, wie Wassergehalt, Transpiration und Verfügbarkeit von Nährstoffen und vieler weiterer Faktoren zu untersuchen.
Die Antwort auf diese Fragen könnten einen weiten Bereich für landwirtschaftliche Anwendungen eröffnen, die darauf abzielen, Bewässerungsmethoden zu verbessern. |
---|