Organisation moléculaire dirigée par le groupe CONH2 en 2D et 3D
Notre étude a pour objet la conception, la synthèse ainsi que l’étude structurale d’architectures supramoléculaires obtenues par auto-assemblage, en se basant sur les concepts de la tectonique moléculaire. Cette branche de la chimie supramoléculaire s’occupe de la conception et la synthèse de mol...
Main Author: | |
---|---|
Other Authors: | |
Language: | fr |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/1866/9216 |
id |
ndltd-umontreal.ca-oai-papyrus.bib.umontreal.ca-1866-9216 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
fr |
sources |
NDLTD |
topic |
Amides Association supramoléculaire Génie cristallin Pont hydrogène Diffraction des rayons-X Microscopie de balayage à effet tunnel (STM) Amides Supramolecular association Crystal engineering Hydrogen bond X-ray diffraction Scanning tunneling microscopy (STM) Chemistry - Organic / Chimie organique (UMI : 0490) |
spellingShingle |
Amides Association supramoléculaire Génie cristallin Pont hydrogène Diffraction des rayons-X Microscopie de balayage à effet tunnel (STM) Amides Supramolecular association Crystal engineering Hydrogen bond X-ray diffraction Scanning tunneling microscopy (STM) Chemistry - Organic / Chimie organique (UMI : 0490) Lacatus, Monica Elena Organisation moléculaire dirigée par le groupe CONH2 en 2D et 3D |
description |
Notre étude a pour objet la conception, la synthèse ainsi que l’étude structurale
d’architectures supramoléculaires obtenues par auto-assemblage, en se basant sur les
concepts de la tectonique moléculaire. Cette branche de la chimie supramoléculaire
s’occupe de la conception et la synthèse de molécules organiques appelées tectons, du grec tectos qui signifie constructeur. Le tecton est souvent constitué de sites de reconnaissance
branchés sur un squelette bien choisi. Les sites de reconnaissance orientés par la géométrie du squelette peuvent participer dans des interactions intermoléculaires qui sont suffisamment fortes et directionnelles pour guider la topologie du cristal résultant. La stratégie envisagée utilise des processus d'auto-assemblage engageant des interactions réversibles entre les tectons. L’auto-assemblage dirigé par de fortes interactions intermoléculaires directionnelles est largement utilisé pour fabriquer des matériaux dont les composants doivent être positionnés en trois dimensions (3D) d'une manière prévisible.
Cette stratégie peut également être utilisée pour contrôler l’association moléculaire en deux dimensions (2D), ce qui permet la construction de monocouches organisées et
prédéterminées sur différents types des surfaces, tels que le graphite.Notre travail a mis l’accent sur le comportement de la fonction amide comme fonction de reconnaissance qui est un analogue du groupement carboxyle déjà utilisé dans
plusieurs études précédentes. Nous avons étudié le comportement d’une série de composés contenant un noyau plat conçu pour faciliter l'adsorption sur le graphite et modifiés par l'ajout de groupes amide pour favoriser la formation de liaisons hydrogène entre les molécules ainsi adsorbées. La capacité de ces composés à former de monocouches organisées à l’échelle moléculaire en 2D a été examinée par microscopie à effet tunnel, etleur organisation en 3D a également été étudiée par cristallographie aux rayons X. Dans notre étude, nous avons systématiquement modifié la géométrie moléculaire et d'autres paramètres afin d'examiner leurs effets sur l'organisation moléculaire. Nos résultats
suggèrent que les analyses structurales combinées en 2D et 3D constituent un important atout dans l'effort pour comprendre les interactions entre les molécules adsorbées et l’effet de l’interaction avec la surface du substrat. === Our study involves the design, synthesis and structural analysis of supramolecular
architectures obtained by self-assembly, based on the concepts of molecular tectonics. This branch of supramolecular chemistry explores the properties of molecules called tectons,from the Greek word tectos, meaning builder. Tectons typically incorporate sites of recognition connected to well-chosen skeletons with defined geometries. The sites of recognition, oriented by the geometry of the skeleton, can participate in intermolecular
interactions that are sufficiently strong and directional to control the topology of the resulting assembly. This strategy is thereby based on self-assembly processes involving reversible interactions between tectons. Self-assembly directed by strong directional intermolecular interactions is widely used to produce materials whose components must be positioned in three dimensions (3D) in a predictable way. This strategy can also be used to
control molecular association in two dimensions (2D), thereby allowing the construction of predictably organized and predetermined nanopatterns on various surfaces, such as
graphite.Our work has focused on the behavior of the amide groups as primary sites of intermolecular interaction. These groups are analogues of carboxyl groups, which have been widely used in previous studies of directed molecular assembly. We have studied the 3D and 2D association of compounds with flat cores designed to favor the formation of sheets and to facilitate adsorption on graphite, modified by the addition of amide groups to promote the formation of intermolecular hydrogen bonds. The ability of these compounds to form predictably ordered 2D nanopatterns has been examined by scanning tunneling
microscopy, and their organization in 3D has also been investigated by X-ray
crystallography. In our study, we have systematically altered molecular geometry and other parameters to examine their effect on molecular organization. Our results suggest that combined structural analyses in 2D and 3D are an important asset in the effort to understand why molecules aggregate in particular ways and how these preferences can be altered by underlying surfaces. |
author2 |
Wuest, James D. |
author_facet |
Wuest, James D. Lacatus, Monica Elena |
author |
Lacatus, Monica Elena |
author_sort |
Lacatus, Monica Elena |
title |
Organisation moléculaire dirigée par le groupe CONH2 en 2D et 3D |
title_short |
Organisation moléculaire dirigée par le groupe CONH2 en 2D et 3D |
title_full |
Organisation moléculaire dirigée par le groupe CONH2 en 2D et 3D |
title_fullStr |
Organisation moléculaire dirigée par le groupe CONH2 en 2D et 3D |
title_full_unstemmed |
Organisation moléculaire dirigée par le groupe CONH2 en 2D et 3D |
title_sort |
organisation moléculaire dirigée par le groupe conh2 en 2d et 3d |
publishDate |
2013 |
url |
http://hdl.handle.net/1866/9216 |
work_keys_str_mv |
AT lacatusmonicaelena organisationmoleculairedirigeeparlegroupeconh2en2det3d |
_version_ |
1718425931124572160 |
spelling |
ndltd-umontreal.ca-oai-papyrus.bib.umontreal.ca-1866-92162017-03-17T08:16:39Z Organisation moléculaire dirigée par le groupe CONH2 en 2D et 3D Lacatus, Monica Elena Wuest, James D. Amides Association supramoléculaire Génie cristallin Pont hydrogène Diffraction des rayons-X Microscopie de balayage à effet tunnel (STM) Amides Supramolecular association Crystal engineering Hydrogen bond X-ray diffraction Scanning tunneling microscopy (STM) Chemistry - Organic / Chimie organique (UMI : 0490) Notre étude a pour objet la conception, la synthèse ainsi que l’étude structurale d’architectures supramoléculaires obtenues par auto-assemblage, en se basant sur les concepts de la tectonique moléculaire. Cette branche de la chimie supramoléculaire s’occupe de la conception et la synthèse de molécules organiques appelées tectons, du grec tectos qui signifie constructeur. Le tecton est souvent constitué de sites de reconnaissance branchés sur un squelette bien choisi. Les sites de reconnaissance orientés par la géométrie du squelette peuvent participer dans des interactions intermoléculaires qui sont suffisamment fortes et directionnelles pour guider la topologie du cristal résultant. La stratégie envisagée utilise des processus d'auto-assemblage engageant des interactions réversibles entre les tectons. L’auto-assemblage dirigé par de fortes interactions intermoléculaires directionnelles est largement utilisé pour fabriquer des matériaux dont les composants doivent être positionnés en trois dimensions (3D) d'une manière prévisible. Cette stratégie peut également être utilisée pour contrôler l’association moléculaire en deux dimensions (2D), ce qui permet la construction de monocouches organisées et prédéterminées sur différents types des surfaces, tels que le graphite.Notre travail a mis l’accent sur le comportement de la fonction amide comme fonction de reconnaissance qui est un analogue du groupement carboxyle déjà utilisé dans plusieurs études précédentes. Nous avons étudié le comportement d’une série de composés contenant un noyau plat conçu pour faciliter l'adsorption sur le graphite et modifiés par l'ajout de groupes amide pour favoriser la formation de liaisons hydrogène entre les molécules ainsi adsorbées. La capacité de ces composés à former de monocouches organisées à l’échelle moléculaire en 2D a été examinée par microscopie à effet tunnel, etleur organisation en 3D a également été étudiée par cristallographie aux rayons X. Dans notre étude, nous avons systématiquement modifié la géométrie moléculaire et d'autres paramètres afin d'examiner leurs effets sur l'organisation moléculaire. Nos résultats suggèrent que les analyses structurales combinées en 2D et 3D constituent un important atout dans l'effort pour comprendre les interactions entre les molécules adsorbées et l’effet de l’interaction avec la surface du substrat. Our study involves the design, synthesis and structural analysis of supramolecular architectures obtained by self-assembly, based on the concepts of molecular tectonics. This branch of supramolecular chemistry explores the properties of molecules called tectons,from the Greek word tectos, meaning builder. Tectons typically incorporate sites of recognition connected to well-chosen skeletons with defined geometries. The sites of recognition, oriented by the geometry of the skeleton, can participate in intermolecular interactions that are sufficiently strong and directional to control the topology of the resulting assembly. This strategy is thereby based on self-assembly processes involving reversible interactions between tectons. Self-assembly directed by strong directional intermolecular interactions is widely used to produce materials whose components must be positioned in three dimensions (3D) in a predictable way. This strategy can also be used to control molecular association in two dimensions (2D), thereby allowing the construction of predictably organized and predetermined nanopatterns on various surfaces, such as graphite.Our work has focused on the behavior of the amide groups as primary sites of intermolecular interaction. These groups are analogues of carboxyl groups, which have been widely used in previous studies of directed molecular assembly. We have studied the 3D and 2D association of compounds with flat cores designed to favor the formation of sheets and to facilitate adsorption on graphite, modified by the addition of amide groups to promote the formation of intermolecular hydrogen bonds. The ability of these compounds to form predictably ordered 2D nanopatterns has been examined by scanning tunneling microscopy, and their organization in 3D has also been investigated by X-ray crystallography. In our study, we have systematically altered molecular geometry and other parameters to examine their effect on molecular organization. Our results suggest that combined structural analyses in 2D and 3D are an important asset in the effort to understand why molecules aggregate in particular ways and how these preferences can be altered by underlying surfaces. 2013-03-26T19:39:58Z NO_RESTRICTION 2013-03-26T19:39:58Z 2013-03-01 2012-10 Thèse ou Mémoire numérique / Electronic Thesis or Dissertation http://hdl.handle.net/1866/9216 fr |