On some Density Theorems in Number Theory and Group Theory

Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier...

Full description

Bibliographic Details
Main Author: Bardestani, Mohammad
Other Authors: Granville, Andrew
Language:en
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/1866/8936
id ndltd-umontreal.ca-oai-papyrus.bib.umontreal.ca-1866-8936
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Groupes profinis
Représentations complexes
Opérateur de Hilbert-Schmidt
Décomposition en valeurs singuliéres
Théoréme de densité de Chebotarev
Corps monogénique
Equation de Thue
Profinite group
Complex representation
Hilbert-Schmidt operator
Singular value decomposition
Chebotarev density theorem
Monogenic field
Thue equation
Mathematics / Mathématiques (UMI : 0405)
spellingShingle Groupes profinis
Représentations complexes
Opérateur de Hilbert-Schmidt
Décomposition en valeurs singuliéres
Théoréme de densité de Chebotarev
Corps monogénique
Equation de Thue
Profinite group
Complex representation
Hilbert-Schmidt operator
Singular value decomposition
Chebotarev density theorem
Monogenic field
Thue equation
Mathematics / Mathématiques (UMI : 0405)
Bardestani, Mohammad
On some Density Theorems in Number Theory and Group Theory
description Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier $p$ assez grand, le groupe $PSL_2(\mathbb{F}_p)$ (d'ordre noté $n$) ne posséde aucun sous-ensemble sans produit de taille $c n^{8/9}$, il y répond par la négative. Nous allons considérer le probléme dans le cas des groupes compacts finis, et plus particuliérement des groupes profinis $SL_k(\mathbb{Z}_p)$ et $Sp_{2k}(\mathbb{Z}_p)$. La premiére partie de cette thése est dédiée à l'obtention de bornes inférieures et supérieures exponentielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite d'établir préalablement une borne inférieure sur la dimension des représentations non-triviales des groupes finis $SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ et $Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Notre théoréme prolonge le travail de Landazuri et Seitz, qui considérent le degré minimal des représentations pour les groupes de Chevalley sur les corps finis, tout en offrant une preuve plus simple que la leur. La seconde partie de la thése à trait à la théorie algébrique des nombres. Un polynome monogéne $f$ est un polynome unitaire irréductible à coefficients entiers qui endengre un corps de nombres monogéne. Pour un nombre premier $q$ donné, nous allons montrer, en utilisant le théoréme de densité de Tchebotariov, que la densité des nombres premiers $p$ tels que $t^q -p$ soit monogéne est supérieure ou égale à $(q-1)/q$. Nous allons également démontrer que, quand $q=3$, la densité des nombres premiers $p$ tels que $\mathbb{Q}(\sqrt[3]{p})$ soit non monogéne est supérieure ou égale à $1/9$. === Gowers in his paper on quasirandom groups studies a question of Babai and Sos asking whether there exists a constant $c > 0$ such that every finite group $G$ has a product-free subset of size at least $c|G|$. Answering the question negatively, he proves that for sufficiently large prime $p$, the group $\mathrm{PSL}_2(\mathbb{F}_p)$ has no product-free subset of size $\geq cn^{8/9}$, where $n$ is the order of $\mathrm{PSL}_2(\mathbb{F}_p)$. We will consider the problem for compact groups and in particular for the profinite groups $\SL_k(\mathh{Z}_p)$ and $\Sp_{2k}(\mathbb{Z}_p)$. In Part I of this thesis, we obtain lower and upper exponential bounds for the supremal measure of the product-free sets. The proof involves establishing a lower bound for the dimension of non-trivial representations of the finite groups $\SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ and $\Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Indeed, our theorem extends and simplifies previous work of Landazuri and Seitz, where they consider the minimal degree of representations for Chevalley groups over a finite field. In Part II of this thesis, we move to algebraic number theory. A monogenic polynomial $f$ is a monic irreducible polynomial with integer coefficients which produces a monogenic number field. For a given prime $q$, using the Chebotarev density theorem, we will show the density of primes $p$, such that $t^q-p$ is monogenic, is greater than or equal to $(q-1)/q$. We will also prove that, when $q=3$, the density of primes $p$, which $\mathbb{Q}(\sqrt[3]{p})$ is non-monogenic, is at least $1/9$.
author2 Granville, Andrew
author_facet Granville, Andrew
Bardestani, Mohammad
author Bardestani, Mohammad
author_sort Bardestani, Mohammad
title On some Density Theorems in Number Theory and Group Theory
title_short On some Density Theorems in Number Theory and Group Theory
title_full On some Density Theorems in Number Theory and Group Theory
title_fullStr On some Density Theorems in Number Theory and Group Theory
title_full_unstemmed On some Density Theorems in Number Theory and Group Theory
title_sort on some density theorems in number theory and group theory
publishDate 2013
url http://hdl.handle.net/1866/8936
work_keys_str_mv AT bardestanimohammad onsomedensitytheoremsinnumbertheoryandgrouptheory
_version_ 1718425729206583296
spelling ndltd-umontreal.ca-oai-papyrus.bib.umontreal.ca-1866-89362017-03-17T08:15:38Z On some Density Theorems in Number Theory and Group Theory Bardestani, Mohammad Granville, Andrew Groupes profinis Représentations complexes Opérateur de Hilbert-Schmidt Décomposition en valeurs singuliéres Théoréme de densité de Chebotarev Corps monogénique Equation de Thue Profinite group Complex representation Hilbert-Schmidt operator Singular value decomposition Chebotarev density theorem Monogenic field Thue equation Mathematics / Mathématiques (UMI : 0405) Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier $p$ assez grand, le groupe $PSL_2(\mathbb{F}_p)$ (d'ordre noté $n$) ne posséde aucun sous-ensemble sans produit de taille $c n^{8/9}$, il y répond par la négative. Nous allons considérer le probléme dans le cas des groupes compacts finis, et plus particuliérement des groupes profinis $SL_k(\mathbb{Z}_p)$ et $Sp_{2k}(\mathbb{Z}_p)$. La premiére partie de cette thése est dédiée à l'obtention de bornes inférieures et supérieures exponentielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite d'établir préalablement une borne inférieure sur la dimension des représentations non-triviales des groupes finis $SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ et $Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Notre théoréme prolonge le travail de Landazuri et Seitz, qui considérent le degré minimal des représentations pour les groupes de Chevalley sur les corps finis, tout en offrant une preuve plus simple que la leur. La seconde partie de la thése à trait à la théorie algébrique des nombres. Un polynome monogéne $f$ est un polynome unitaire irréductible à coefficients entiers qui endengre un corps de nombres monogéne. Pour un nombre premier $q$ donné, nous allons montrer, en utilisant le théoréme de densité de Tchebotariov, que la densité des nombres premiers $p$ tels que $t^q -p$ soit monogéne est supérieure ou égale à $(q-1)/q$. Nous allons également démontrer que, quand $q=3$, la densité des nombres premiers $p$ tels que $\mathbb{Q}(\sqrt[3]{p})$ soit non monogéne est supérieure ou égale à $1/9$. Gowers in his paper on quasirandom groups studies a question of Babai and Sos asking whether there exists a constant $c > 0$ such that every finite group $G$ has a product-free subset of size at least $c|G|$. Answering the question negatively, he proves that for sufficiently large prime $p$, the group $\mathrm{PSL}_2(\mathbb{F}_p)$ has no product-free subset of size $\geq cn^{8/9}$, where $n$ is the order of $\mathrm{PSL}_2(\mathbb{F}_p)$. We will consider the problem for compact groups and in particular for the profinite groups $\SL_k(\mathh{Z}_p)$ and $\Sp_{2k}(\mathbb{Z}_p)$. In Part I of this thesis, we obtain lower and upper exponential bounds for the supremal measure of the product-free sets. The proof involves establishing a lower bound for the dimension of non-trivial representations of the finite groups $\SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ and $\Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Indeed, our theorem extends and simplifies previous work of Landazuri and Seitz, where they consider the minimal degree of representations for Chevalley groups over a finite field. In Part II of this thesis, we move to algebraic number theory. A monogenic polynomial $f$ is a monic irreducible polynomial with integer coefficients which produces a monogenic number field. For a given prime $q$, using the Chebotarev density theorem, we will show the density of primes $p$, such that $t^q-p$ is monogenic, is greater than or equal to $(q-1)/q$. We will also prove that, when $q=3$, the density of primes $p$, which $\mathbb{Q}(\sqrt[3]{p})$ is non-monogenic, is at least $1/9$. 2013-01-24T17:21:05Z NO_RESTRICTION 2013-01-24T17:21:05Z 2013-01-04 2012-08 Thèse ou Mémoire numérique / Electronic Thesis or Dissertation http://hdl.handle.net/1866/8936 en