Leveraging deep reinforcement learning in the smart grid environment
L’apprentissage statistique moderne démontre des résultats impressionnants, où les or- dinateurs viennent à atteindre ou même à excéder les standards humains dans certaines applications telles que la vision par ordinateur ou les jeux de stratégie. Pourtant, malgré ces avancées, force est de constate...
Main Author: | Desage, Ysaël |
---|---|
Other Authors: | Bastin, Fabian |
Format: | Others |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | http://hdl.handle.net/1866/25097 |
Similar Items
-
Deep learning methods for predicting flows in power grids : novel architectures and algorithms
by: Donnot, Benjamin
Published: (2019) -
Contributions to Batch Mode Reinforcement Learning
by: Fonteneau, Raphaël
Published: (2011) -
Learning sensori-motor mappings using little knowledge : application to manipulation robotics
by: De La Bourdonnaye, François
Published: (2018) -
Real-Time Reinforcement Learning
by: Ramstedt, Simon
Published: (2020) -
Deep learning and reinforcement learning methods for grounded goal-oriented dialogue
by: de Vries, Harm
Published: (2021)