Mechanotransduction impairment in adolescent idiopathic scoliosis

La scoliose idiopathique de l'adolescent (SIA) est une courbure rachidienne tridimensionnelle de plus de 10° qui affecte 4% de la population pédiatrique. L’hétérogénéité de ce désordre musculo-squelettique complexe explique notre incompréhension des causes de la SIA. Néanmoins, plusieurs facteu...

Full description

Bibliographic Details
Main Author: Oliazadeh, Niaz
Other Authors: Moreau, Alain
Language:English
Published: 2020
Subjects:
Wnt
Online Access:http://hdl.handle.net/1866/23514
Description
Summary:La scoliose idiopathique de l'adolescent (SIA) est une courbure rachidienne tridimensionnelle de plus de 10° qui affecte 4% de la population pédiatrique. L’hétérogénéité de ce désordre musculo-squelettique complexe explique notre incompréhension des causes de la SIA. Néanmoins, plusieurs facteurs biologiques ont été associées à son étiologie. Les réponses osseuses aux stimulations mécaniques normalement appliquées sont nécessaire au fonctionnement optimal du système squelettique. Cependant, la mécanotransduction des tissus musculo-squelettiques dans la SIA est méconnu. L'objectif principal de cette thèse était d'étudier l'apport de la mécanotransduction dans l'étiologie de la SIA au niveau cellulaire et moléculaire. Nous avons étudié les ostéoblastes des patients atteints de SIA et des sujets témoins. L'induction mécanique a été réalisée à l'aide d'une application d'écoulement de fluide oscillatoire. L’immunofluorescence (IF) et la microscopie confocale ont été utilisées pour évaluer les cils, l'actine et les tests fonctionnels. Les modifications moléculaires ont été étudiés par qPCR ou ELISA. Un séquençage d'exome entier sur une cohorte de 73 SIA et 70 sujets témoins appariés a été fait, pour vérifier l'hypothèse que l'accumulation de variants rares dans des gènes impliqués dans la mécanotranduction cellulaire contribueraient à l'étiologie de la SIA. Nous avons découvert une élongation anormale des cils des ostéoblastes SIA, qui étaient significativement plus longs que ceux des sujets témoins dans des conditions de ciliogenèse. Les cellules SIA soumises à une application d'écoulement de fluide, n'ont pas été capable d'ajuster la longueur de leurs cils proportionnellement à la force appliquée. La réponse de l'ajustement de la longueur des cils était significativement différente de celle des ostéoblastes témoins, par des stimulations à court et à long terme.. L'expression des facteurs ostéogéniques était significativement réduite dans les ostéoblastes SIA, suggérant une diminution de la mécanosensibilité. De plus, l'analyse transcriptomique en réponse aux forces appliquées a révélé une altération de l'expression des gènes impliqués dans la voie canonique de Wnt. L'augmentation de la sécrétion du facteur VEGF-A en réponse aux forces appliquées dans les ostéoblastes témoins n'a pas été détectée dans les ostéoblastes SIA. Notre analyse SKAT-O des données du séquençage d’exomes entiers a confirmé l’accumulation de variants rares dans la SIA au niveau de gènes associés à la mécanotransduction cellulaire. Les conséquences de ces anomalies de mécanotransduction ont été étudié par des études cellulaires fonctionnelles, démontrant que les ostéoblastes SIA n’ont pas réussi à se positionner ni à s’allonger proportionnellement au flux bidirectionnel appliqué. Le réarrangement des filaments d'actine induit par l’application d’un flux a été compromis dans la SIA. . Enfin, il a été démontré que le flux de fluide avait un effet inhibiteur sur leur migration. Nos données suggèrent une mécanotransduction altérée dans les ostéoblastes SIA affectant les cils, les voies moléculaires de signalisation, le cytosquelette et le comportement de la cellule en réponse à l'écoulement appliqué. La réponse cellulaire à ces stimulations joue un rôle dans la structure, la force, la forme et le fonctionnement du système squelettique. Etudier le profil de réponse altérée des cellules osseuses scoliotiques peut mener à la conception des approches thérapeutiques plus efficaces === Adolescent idiopathic scoliosis (AIS) is a three-dimensional spinal curvature that affects up to 4% of children. As a complex disorder, the cause of AIS is still poorly understood. However, multiple categories of biological factors have been found to be associated with its etiology. The role of biomechanics has been acknowledged by clinicians both in the description of deformity and in relation to bracing treatments. Bone responses to routinely applied forces are an important part in a tightly regulated network that is necessary for the optimal function of the skeletal system. However, little is known about the mechanotransduction of musculoskeletal tissues in AIS. The main goal of this dissertation was to investigate the contribution of mechanotransduction in the etiology of AIS from a cellular-molecular aspect. We studied primary osteoblasts obtained intraoperatively from AIS patients and compared them to samples from trauma cases as controls. Fluid flow application was used for mechanical induction. Immunofluorescence staining, and confocal microscopy was used to assess cilia, actin and cellular tests. Molecular changes were followed using RT-PCR or ELISA. We also performed whole exome sequencing (WES) to test the hypothesis that rare variants accumulation in genes involved in cellular mechanotransduction could contribute to AIS etiology. We found an abnormal cilia elongation among AIS osteoblasts, which grew significantly longer than controls. AIS cells after fluid flow application failed to adjust their cilia length in proportion to the applied force. Under both short- and long-term flow applications, their cilia length adjustment was significantly different from controls. Notably, the elevation in the expression of osteogenic factors, that was normally observed with control osteoblasts, was significantly reduced in AIS osteoblasts, suggesting a decrease in their mechanosensitivity. Moreover, transcriptomic analysis following the applied forces revealed an altered expression of genes involved in the Wnt canonical pathway. Strain induced increase in secreted VEGF-A in control osteoblasts was not detected in AIS flow-conditioned media. At the genomic level, our SKAT-O analysis of the WES data also supported the involvement of heterogenous defects in genes pertaining to the cellular mechanotransduction machinery. We tested the consequence of these mechanotransduction abnormalities in a series of functional cellular studies. As expected and unlike controls, AIS osteoblasts failed to position or elongate themselves in proportion to the bidirectional applied flow. The strain-induced rearrangement of actin filaments was compromised in AIS osteoblasts. Finally, fluid flow showed to have an inhibitory effect on their migration contrasting with control cells that migrated significantly faster under flow. In summary, our data strongly suggest an impaired mechanotransduction in AIS osteoblasts that affect cilia, downstream signaling molecular pathways, cytoskeleton and finally the behaviour of the whole cell in response to flow. Fluid flow is one of the main mechanical forces applied physiologically to the bone cells. Cellular responses to these stimulations play a critical role in the structure, strength, shape and optimal performance of the skeletal system. Mapping the impaired profile response of scoliotic bone cells can help in designing more efficient therapeutic approaches or explaining the mechanisms behind less than optimal bracing outcomes.