Rôle de la plasticité synaptique des interneurones somatostatinergiques dans l’apprentissage et la mémoire dépendants de l’hippocampe

La plasticité synaptique activité-dépendante forme la base physiologique de l’apprentissage et de la mémoire dépendants de l’hippocampe. Le rôle joué par les différents sous-types d’interneurones dans l’apprentissage et la mémoire hippocampiques reste inconnu, mais repose probablement sur des mécani...

Full description

Bibliographic Details
Main Author: La Fontaine, Alexandre
Other Authors: Lacaille, Jean-Claude
Language:fr
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/1866/11874
Description
Summary:La plasticité synaptique activité-dépendante forme la base physiologique de l’apprentissage et de la mémoire dépendants de l’hippocampe. Le rôle joué par les différents sous-types d’interneurones dans l’apprentissage et la mémoire hippocampiques reste inconnu, mais repose probablement sur des mécanismes de la plasticité spécifique aux synapses de certains sous-types d’interneurones. Les synapses excitatrices établies sur les interneurones de l’oriens-alveus dans l’aire CA1 exhibent une forme persistante de potentialisation à long terme induite par la stimulation chimique des récepteurs métabotropiques du glutamate de type 1 (mGluR1) [mGluR1-mediated chemical late long-term potentiation (cL-LTPmGluR1)]. Le présent projet de recherche avait pour objectifs d’identifier les sous-types d’interneurones de l’oriens-alveus exprimant la cL-LTPmGluR1 et d’examiner les mécanismes d’induction et d’expression de celle-ci. Nous avons déterminé que la stimulation répétée des mGluR1 induit de la cL-LTPmGluR1 aux synapses excitatrices établies sur le sous-type d’interneurones exprimant le peptide somatostatine (SOM-INs). Des enregistrements électrophysiologiques couplés à des inhibiteurs pharmacologiques et à un knock-out fonctionnel de mammalian target of rapamycin complexe 1 (mTORC1) ont montré que l’induction de la cL-LTPmGluR1 (qui consiste en trois applications de l’agoniste des mGluR1/5, le (S)-3,5-dihydroxyphénylglycine (DHPG) en présence de l’antagoniste des récepteurs métabotropiques du glutamate de type 5 (mGluR5), le 2-méthyl-6-(phényléthynyl)-pyridine (MPEP)) des SOM-INs requiert les voies de signalisation des mGluR1, de extracellular signal-regulated protein kinase (ERK) et de mTORC1. L’ensemble de nos résultats montre qu’une forme persistante de plasticité synaptique sous-tendue par mTORC1 est induite par la stimulation répétée des mGluR1 dans les interneurones hippocampiques exprimant le peptide somatostatine. La connaissance des mécanismes sous-tendant la cL-LTPmGluR1, couplée à l’utilisation de modèles animal in vivo, rendront maintenant possible le blocage de la cL-LTPmGluR1 dans les SOM-INs et l’examen de son rôle dans l’apprentissage et la mémoire dépendants de l’hippocampe. === Hippocampus-dependent learning and memory are mediated by activity-dependent synaptic plasticity. The role that different subtypes of interneurons play in hippocampal learning and memory remains largely unknown, but likely relies on cell type-specific plasticity mechanisms at interneuron synapses. Excitatory synapses onto CA1 oriens-alveus interneurons show persistent long-term potentiation induced by chemical stimulation of metabotropic glutamate receptor 1 (mGluR1) [mGluR1-mediated chemical late long-term potentiation (cL-LTPmGluR1)]. The objectives of this project were to identify the oriens-alveus interneuron subtypes expressing cL-LTPmGluR1 and examine its induction and expression mechanisms. We determined that repeated mGluR1 stimulation induces cL-LTPmGluR1 at excitatory synapses onto the somatostatin-expressing interneuron subtype (SOM-INs). Electrophysiological recordings coupled to pharmacological inhibitors and a functional knock-out of mammalian target of rapamycin complex 1 (mTORC1) showed that SOM-INs cL-LTPmGluR1 induction (which consisted of three applications of the mGluR1/5 agonist (S)-3,5-dihydroxyphenylglycine (DHPG) in the presence of metabotropic glutamate receptor 5 (mGluR5) antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP)) requires mGluR1, extracellular signal-regulated protein kinase (ERK) and mTORC1 signaling pathways. Collectively, our results show that persistent synaptic plasticity mediated by mTORC1 is induced by repeated mGluR1 stimulation in somatostatin-expressing hippocampal interneurons. Knowledge of cL-LTPmGluR1’s underlying mechanisms, coupled to in vivo models, will now make it possible to interfere with SOM-INs cL-LTPmGluR1 and examine its role in hippocampal-dependent learning and memory.