Meta-heuristic Solution Methods for Rich Vehicle Routing Problems

Le problème de tournées de véhicules (VRP), introduit par Dantzig and Ramser en 1959, est devenu l'un des problèmes les plus étudiés en recherche opérationnelle, et ce, en raison de son intérêt méthodologique et de ses retombées pratiques dans de nombreux domaines tels que le transport, la logi...

Full description

Bibliographic Details
Main Author: Nguyen, Khanh Phuong
Other Authors: Crainic, Teodor Gabriel
Language:en
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/1866/11200
id ndltd-umontreal.ca-oai-papyrus.bib.umontreal.ca-1866-11200
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Problèmes de tournées de véhicules
Ramassage et livraison
Demandes dépendantes du temps
Synchronisation
Méta-heuristique
Algorithme génétiques hybrides générationnels
Recherche tabou
Vehicle routing problem
Pickup and delivery
Time-dependent demand
Synchronization
Meta-heuristic
Hybrid generational genetic algorithm
Tabu search
Applied Sciences - Operations Research / Sciences appliqués et technologie - Recherche opérationnelle (UMI : 0796)
spellingShingle Problèmes de tournées de véhicules
Ramassage et livraison
Demandes dépendantes du temps
Synchronisation
Méta-heuristique
Algorithme génétiques hybrides générationnels
Recherche tabou
Vehicle routing problem
Pickup and delivery
Time-dependent demand
Synchronization
Meta-heuristic
Hybrid generational genetic algorithm
Tabu search
Applied Sciences - Operations Research / Sciences appliqués et technologie - Recherche opérationnelle (UMI : 0796)
Nguyen, Khanh Phuong
Meta-heuristic Solution Methods for Rich Vehicle Routing Problems
description Le problème de tournées de véhicules (VRP), introduit par Dantzig and Ramser en 1959, est devenu l'un des problèmes les plus étudiés en recherche opérationnelle, et ce, en raison de son intérêt méthodologique et de ses retombées pratiques dans de nombreux domaines tels que le transport, la logistique, les télécommunications et la production. L'objectif général du VRP est d'optimiser l'utilisation des ressources de transport afin de répondre aux besoins des clients tout en respectant les contraintes découlant des exigences du contexte d’application. Les applications réelles du VRP doivent tenir compte d’une grande variété de contraintes et plus ces contraintes sont nombreuse, plus le problème est difficile à résoudre. Les VRPs qui tiennent compte de l’ensemble de ces contraintes rencontrées en pratique et qui se rapprochent des applications réelles forment la classe des problèmes ‘riches’ de tournées de véhicules. Résoudre ces problèmes de manière efficiente pose des défis considérables pour la communauté de chercheurs qui se penchent sur les VRPs. Cette thèse, composée de deux parties, explore certaines extensions du VRP vers ces problèmes. La première partie de cette thèse porte sur le VRP périodique avec des contraintes de fenêtres de temps (PVRPTW). Celui-ci est une extension du VRP classique avec fenêtres de temps (VRPTW) puisqu’il considère un horizon de planification de plusieurs jours pendant lesquels les clients n'ont généralement pas besoin d’être desservi à tous les jours, mais plutôt peuvent être visités selon un certain nombre de combinaisons possibles de jours de livraison. Cette généralisation étend l'éventail d'applications de ce problème à diverses activités de distributions commerciales, telle la collecte des déchets, le balayage des rues, la distribution de produits alimentaires, la livraison du courrier, etc. La principale contribution scientifique de la première partie de cette thèse est le développement d'une méta-heuristique hybride dans la quelle un ensemble de procédures de recherche locales et de méta-heuristiques basées sur les principes de voisinages coopèrent avec un algorithme génétique afin d’améliorer la qualité des solutions et de promouvoir la diversité de la population. Les résultats obtenus montrent que la méthode proposée est très performante et donne de nouvelles meilleures solutions pour certains grands exemplaires du problème. La deuxième partie de cette étude a pour but de présenter, modéliser et résoudre deux problèmes riches de tournées de véhicules, qui sont des extensions du VRPTW en ce sens qu'ils incluent des demandes dépendantes du temps de ramassage et de livraison avec des restrictions au niveau de la synchronization temporelle. Ces problèmes sont connus respectivement sous le nom de Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-VRPTW) et de Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows and Synchronization (MZT-PDTWS). Ces deux problèmes proviennent de la planification des opérations de systèmes logistiques urbains à deux niveaux. La difficulté de ces problèmes réside dans la manipulation de deux ensembles entrelacés de décisions: la composante des tournées de véhicules qui vise à déterminer les séquences de clients visités par chaque véhicule, et la composante de planification qui vise à faciliter l'arrivée des véhicules selon des restrictions au niveau de la synchronisation temporelle. Auparavant, ces questions ont été abordées séparément. La combinaison de ces types de décisions dans une seule formulation mathématique et dans une même méthode de résolution devrait donc donner de meilleurs résultats que de considérer ces décisions séparément. Dans cette étude, nous proposons des solutions heuristiques qui tiennent compte de ces deux types de décisions simultanément, et ce, d'une manière complète et efficace. Les résultats de tests expérimentaux confirment la performance de la méthode proposée lorsqu’on la compare aux autres méthodes présentées dans la littérature. En effet, la méthode développée propose des solutions nécessitant moins de véhicules et engendrant de moindres frais de déplacement pour effectuer efficacement la même quantité de travail. Dans le contexte des systèmes logistiques urbains, nos résultats impliquent une réduction de la présence de véhicules dans les rues de la ville et, par conséquent, de leur impact négatif sur la congestion et sur l’environnement. === For more than half of century, since the paper of Dantzig and Ramser (1959) was introduced, the Vehicle Routing Problem (VRP) has been one of the most extensively studied problems in operations research due to its methodological interest and practical relevance in many fields such as transportation, logistics, telecommunications, and production. The general goal of the VRP is to optimize the use of transportation resources to service customers with respect to side-constraints deriving from real-world applications. The practical applications of the VRP may have a variety of constraints, and obviously, the larger the set of constraints that need to be considered, i.e., corresponding to `richer' VRPs, the more difficult the task of problem solving. The needs to study closer representations of actual applications and methodologies producing high-quality solutions quickly to larger-sized application problems have increased steadily, providing significant challenges for the VRP research community. This dissertation explores these extensional issues of the VRP. The first part of the dissertation addresses the Periodic Vehicle Routing Problem with Time Windows (PVRPTW) which generalizes the classical Vehicle Routing Problem with Time Windows (VRPTW) by extending the planning horizon to several days where customers generally do not require delivery on every day, but rather according to one of a limited number of possible combinations of visit days. This generalization extends the scope of applications to many commercial distribution activities such as waste collection, street sweeping, grocery distribution, mail delivery, etc. The major contribution of this part is the development of a population-based hybrid meta-heuristic in which a set of local search procedures and neighborhood-based meta-heuristics cooperate with the genetic algorithm population evolution mechanism to enhance the solution quality as well as to promote diversity of the genetic algorithm population. The results show that the proposed methodology is highly competitive, providing new best solutions in some large instances. The second part of the dissertation aims to present, model and solve two rich vehicle routing problems which further extend the VRPTW with time-dependent demands of pickup and delivery, and hard time synchronization restrictions. They are called Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-VRPTW), and Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows and Synchronization (MZT-PDTWS), respectively. These two problems originate from planning the operations of two-tiered City Logistics systems. The difficulty of these problems lies in handling two intertwined sets of decisions: the routing component which aims to determine the sequences of customers visited by each vehicle, and the scheduling component which consists in planning arrivals of vehicles at facilities within hard time synchronization restrictions. Previously, these issues have been addressed separately. Combining these decisions into one formulation and solution method should yield better results. In this dissertation we propose meta-heuristics that address the two decisions simultaneously, in a comprehensive and efficient way. Experiments confirm the good performance of the proposed methodology compared to the literature, providing system managers with solution requiring less vehicles and travel costs to perform efficiently the same amount of work. In the context of City Logistics systems, our results indicate a reduction in the presence of vehicles on the streets of the city and, thus, in their negative impact on congestion and environment.
author2 Crainic, Teodor Gabriel
author_facet Crainic, Teodor Gabriel
Nguyen, Khanh Phuong
author Nguyen, Khanh Phuong
author_sort Nguyen, Khanh Phuong
title Meta-heuristic Solution Methods for Rich Vehicle Routing Problems
title_short Meta-heuristic Solution Methods for Rich Vehicle Routing Problems
title_full Meta-heuristic Solution Methods for Rich Vehicle Routing Problems
title_fullStr Meta-heuristic Solution Methods for Rich Vehicle Routing Problems
title_full_unstemmed Meta-heuristic Solution Methods for Rich Vehicle Routing Problems
title_sort meta-heuristic solution methods for rich vehicle routing problems
publishDate 2014
url http://hdl.handle.net/1866/11200
work_keys_str_mv AT nguyenkhanhphuong metaheuristicsolutionmethodsforrichvehicleroutingproblems
_version_ 1718426181355700224
spelling ndltd-umontreal.ca-oai-papyrus.bib.umontreal.ca-1866-112002017-03-17T08:17:50Z Meta-heuristic Solution Methods for Rich Vehicle Routing Problems Nguyen, Khanh Phuong Crainic, Teodor Gabriel Toulouse, Michel Problèmes de tournées de véhicules Ramassage et livraison Demandes dépendantes du temps Synchronisation Méta-heuristique Algorithme génétiques hybrides générationnels Recherche tabou Vehicle routing problem Pickup and delivery Time-dependent demand Synchronization Meta-heuristic Hybrid generational genetic algorithm Tabu search Applied Sciences - Operations Research / Sciences appliqués et technologie - Recherche opérationnelle (UMI : 0796) Le problème de tournées de véhicules (VRP), introduit par Dantzig and Ramser en 1959, est devenu l'un des problèmes les plus étudiés en recherche opérationnelle, et ce, en raison de son intérêt méthodologique et de ses retombées pratiques dans de nombreux domaines tels que le transport, la logistique, les télécommunications et la production. L'objectif général du VRP est d'optimiser l'utilisation des ressources de transport afin de répondre aux besoins des clients tout en respectant les contraintes découlant des exigences du contexte d’application. Les applications réelles du VRP doivent tenir compte d’une grande variété de contraintes et plus ces contraintes sont nombreuse, plus le problème est difficile à résoudre. Les VRPs qui tiennent compte de l’ensemble de ces contraintes rencontrées en pratique et qui se rapprochent des applications réelles forment la classe des problèmes ‘riches’ de tournées de véhicules. Résoudre ces problèmes de manière efficiente pose des défis considérables pour la communauté de chercheurs qui se penchent sur les VRPs. Cette thèse, composée de deux parties, explore certaines extensions du VRP vers ces problèmes. La première partie de cette thèse porte sur le VRP périodique avec des contraintes de fenêtres de temps (PVRPTW). Celui-ci est une extension du VRP classique avec fenêtres de temps (VRPTW) puisqu’il considère un horizon de planification de plusieurs jours pendant lesquels les clients n'ont généralement pas besoin d’être desservi à tous les jours, mais plutôt peuvent être visités selon un certain nombre de combinaisons possibles de jours de livraison. Cette généralisation étend l'éventail d'applications de ce problème à diverses activités de distributions commerciales, telle la collecte des déchets, le balayage des rues, la distribution de produits alimentaires, la livraison du courrier, etc. La principale contribution scientifique de la première partie de cette thèse est le développement d'une méta-heuristique hybride dans la quelle un ensemble de procédures de recherche locales et de méta-heuristiques basées sur les principes de voisinages coopèrent avec un algorithme génétique afin d’améliorer la qualité des solutions et de promouvoir la diversité de la population. Les résultats obtenus montrent que la méthode proposée est très performante et donne de nouvelles meilleures solutions pour certains grands exemplaires du problème. La deuxième partie de cette étude a pour but de présenter, modéliser et résoudre deux problèmes riches de tournées de véhicules, qui sont des extensions du VRPTW en ce sens qu'ils incluent des demandes dépendantes du temps de ramassage et de livraison avec des restrictions au niveau de la synchronization temporelle. Ces problèmes sont connus respectivement sous le nom de Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-VRPTW) et de Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows and Synchronization (MZT-PDTWS). Ces deux problèmes proviennent de la planification des opérations de systèmes logistiques urbains à deux niveaux. La difficulté de ces problèmes réside dans la manipulation de deux ensembles entrelacés de décisions: la composante des tournées de véhicules qui vise à déterminer les séquences de clients visités par chaque véhicule, et la composante de planification qui vise à faciliter l'arrivée des véhicules selon des restrictions au niveau de la synchronisation temporelle. Auparavant, ces questions ont été abordées séparément. La combinaison de ces types de décisions dans une seule formulation mathématique et dans une même méthode de résolution devrait donc donner de meilleurs résultats que de considérer ces décisions séparément. Dans cette étude, nous proposons des solutions heuristiques qui tiennent compte de ces deux types de décisions simultanément, et ce, d'une manière complète et efficace. Les résultats de tests expérimentaux confirment la performance de la méthode proposée lorsqu’on la compare aux autres méthodes présentées dans la littérature. En effet, la méthode développée propose des solutions nécessitant moins de véhicules et engendrant de moindres frais de déplacement pour effectuer efficacement la même quantité de travail. Dans le contexte des systèmes logistiques urbains, nos résultats impliquent une réduction de la présence de véhicules dans les rues de la ville et, par conséquent, de leur impact négatif sur la congestion et sur l’environnement. For more than half of century, since the paper of Dantzig and Ramser (1959) was introduced, the Vehicle Routing Problem (VRP) has been one of the most extensively studied problems in operations research due to its methodological interest and practical relevance in many fields such as transportation, logistics, telecommunications, and production. The general goal of the VRP is to optimize the use of transportation resources to service customers with respect to side-constraints deriving from real-world applications. The practical applications of the VRP may have a variety of constraints, and obviously, the larger the set of constraints that need to be considered, i.e., corresponding to `richer' VRPs, the more difficult the task of problem solving. The needs to study closer representations of actual applications and methodologies producing high-quality solutions quickly to larger-sized application problems have increased steadily, providing significant challenges for the VRP research community. This dissertation explores these extensional issues of the VRP. The first part of the dissertation addresses the Periodic Vehicle Routing Problem with Time Windows (PVRPTW) which generalizes the classical Vehicle Routing Problem with Time Windows (VRPTW) by extending the planning horizon to several days where customers generally do not require delivery on every day, but rather according to one of a limited number of possible combinations of visit days. This generalization extends the scope of applications to many commercial distribution activities such as waste collection, street sweeping, grocery distribution, mail delivery, etc. The major contribution of this part is the development of a population-based hybrid meta-heuristic in which a set of local search procedures and neighborhood-based meta-heuristics cooperate with the genetic algorithm population evolution mechanism to enhance the solution quality as well as to promote diversity of the genetic algorithm population. The results show that the proposed methodology is highly competitive, providing new best solutions in some large instances. The second part of the dissertation aims to present, model and solve two rich vehicle routing problems which further extend the VRPTW with time-dependent demands of pickup and delivery, and hard time synchronization restrictions. They are called Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-VRPTW), and Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows and Synchronization (MZT-PDTWS), respectively. These two problems originate from planning the operations of two-tiered City Logistics systems. The difficulty of these problems lies in handling two intertwined sets of decisions: the routing component which aims to determine the sequences of customers visited by each vehicle, and the scheduling component which consists in planning arrivals of vehicles at facilities within hard time synchronization restrictions. Previously, these issues have been addressed separately. Combining these decisions into one formulation and solution method should yield better results. In this dissertation we propose meta-heuristics that address the two decisions simultaneously, in a comprehensive and efficient way. Experiments confirm the good performance of the proposed methodology compared to the literature, providing system managers with solution requiring less vehicles and travel costs to perform efficiently the same amount of work. In the context of City Logistics systems, our results indicate a reduction in the presence of vehicles on the streets of the city and, thus, in their negative impact on congestion and environment. 2014-10-07T18:47:48Z NO_RESTRICTION 2014-10-07T18:47:48Z 2014-09-29 2014-06 Thèse ou Mémoire numérique / Electronic Thesis or Dissertation http://hdl.handle.net/1866/11200 en