Virus-Host Interactions in the Development of Avian Leukosis Virus-Induced Osteopetrosis: a Dissertation

Avian leukosis virus (ALV)-induced osteopetrosis is a proliferative disorder of the bone affecting the growth and differentiation of osteoblasts. Osteopetrosis is a polyclonal disease in which cells of the bone contain, on average, multiple viral DNA copies. Osteopetrotic bone is also characterized...

Full description

Bibliographic Details
Main Author: Foster, Rosalinda Gram
Format: Others
Published: eScholarship@UMMS 1993
Subjects:
Online Access:https://escholarship.umassmed.edu/gsbs_diss/180
https://escholarship.umassmed.edu/cgi/viewcontent.cgi?article=1181&context=gsbs_diss
Description
Summary:Avian leukosis virus (ALV)-induced osteopetrosis is a proliferative disorder of the bone affecting the growth and differentiation of osteoblasts. Osteopetrosis is a polyclonal disease in which cells of the bone contain, on average, multiple viral DNA copies. Osteopetrotic bone is also characterized by the accumulation of unintegrated viral DNA, suggesting an atypical life cycle of the virus in the infected osteoblasts. To better understand virus-host interactions in the induction of osteopetrosis by ALVs, infected chick osteoblast cultures and osteopetrotic bone were examined for aspects of the virus life cycle and effects of infection on osteoblast function. Levels of infection and virus expression were compared in cultured osteoblasts and osteopetrotic bone. Osteopetrotic bone contained higher levels of viral DNA and correspondingly higher levels of viral proteins than infected osteoblast cultures, suggesting a higher viral load in the diseased bone. A significant level of mature Gag protein was present in the bone, suggesting the accumulation of mature virus particles in the diseased bone. It is possible that the accumulation of virus could facilitate the high levels of infection observed in the diseased bone. The mechanism by which unintegrated viral DNA persisted in osteopetrotic bone was investigated by examining the susceptibility of infected osteoblasts to superinfection. The results indicated that, in culture, infected osteoblasts were able to establish interference to superinfection. This suggests that the persistence of unintegrated viral DNA in osteopetrotic bone may not result from the continuing infection of productively infected osteoblasts. The effect of virus infection on osteoblast function was examined in the diseased bone and in osteoblast cultures. In infected chickens, osteoblast activity, as evidenced by the expression of osteoblast phenotypic markers, was increased only in chickens developing severe osteopetrosis. In culture, virus infection had no apparent effect on either the proliferation or differentiation of osteoblasts. This indicates that infection was itself not sufficient to perturb osteoblast function. Furthermore, it suggested that additional components of the bone may be required for ALV infection to induce the abnormal activity of osteoblasts observed in osteopetrosis.