Summary: | Mécanismes d’activation et conséquences fonctionnelles de la dimérisation des récepteurs aux chimiokines<p><p>Les chimiokines sont de petites protéines qui régulent la migration des cellules immunitaires. Elles exercent leur action en se liant à des récepteurs appartenant à la famille des récepteurs couplés aux protéines G (RCPG) dont la fonction est intimement liée à la régulation des cellules immunitaires. Notre laboratoire étudie depuis plusieurs années les relations reliant la structure et la fonction des récepteurs aux chimiokines. Ces dernières années, un nouveau concept est venu révolutionner le mode de fonctionnement des RCPGs. En effet, des travaux ont montré que la plupart des RCPGs sont capables de former des dimères. Le but de cette thèse de doctorat est d’étudier de manière systématique la dimérisation des récepteurs aux chimiokines et d’analyser les conséquences fonctionnelles de la dimérisation. <p><p>Dimérisation des récepteurs humains aux chimiokines et conséquences fonctionnelles<p><p>En utilisant une technique biophysique basée sur un transfert d’énergie de luminescence (BRET) nous avons montré au cours de ce travail de thèse que les récepteurs CCR1, CCR2, CCR5, CCR7 et CXCR4 sont capables de former des homodimères et des hétérodimères. De plus, une dimérisation entre ChemR23, dont le ligand naturel, la chémérine, est structurellement différent des chimiokines, et les récepteurs CCR7 et CXCR4, a également été identifiée. <p><p>D’un point de vue fonctionnel, des expériences réalisées au laboratoire dans le cadre d’un autre travail de thèse ont identifié une forme de compétition croisée entre CCR2, CCR5 et CXCR4 où la liaison de ligands (agonistes ou antagonistes) spécifiques de l'un des deux récepteurs inhibe la liaison des ligands spécifiques de l’autre. Ces effets ont été démontrés sur des cellules recombinantes mais aussi sur des cellules immunes et dans un modèle in vivo. (El-Asmar, 2005; Springael, 2006; Sohy, 2007; Sohy, 2009). Au cours de ce travail, nous nous sommes dans un premier temps focalisés sur les <p>hétéromères de ChemR23 avec CXCR4 et CCR7 et nous avons ensuite étudié plus en profondeur les hétéromères de CCR7. Concernant la dimérisation de ChemR23 avec les récepteurs aux chimiokines CCR7 et CXCR4, nous avons pu mettre en évidence une coopérativité négative de liaison entre les agonistes des récepteurs comme cela avait pu être démontré pour CCR2/CCR5/CXCR4. Par contre, nous n’avons observé aucun effet de compétition hétérologue ou d’inhibition fonctionnelle croisée de l’AMD3100 sur ChemR23 quand il est coexprimé avec CXCR4. De manière additionnelle, nous avons pu observer cette compétition croisée sur des cellules dendritiques murines immatures, démontrant l’existence des effets de l’hétérodimérisation lorsque les récepteurs sont exprimés à un niveau physiologique. Lors de l’étude approfondie des hétéromères de CCR7, nous avons montré que les conséquences fonctionnelles de l’hétérodimérisation de CCR7 sont différentes suivant le récepteur avec lequel il interagit. Pour l’hétérodimère CCR7/CCR2, nous avons identifié une forme de compétition croisée, où la liaison de ligands spécifiques de l'un des deux récepteurs inhibe la liaison des ligands spécifiques de l’autre, rejoignant les effets mis en évidence pour les hétéromères CCR2/CCR5/CXCR4. Ensuite, nous avons montré pour l’hétérodimère CCR7/CCR5 que les ligands de CCR7 sont capables d’inhiber la liaison des ligands spécifiques sur CCR5 mais que l’inverse n’est pas vrai. Enfin, pour l’hétérodimère CCR7/CXCR4, nous n’avons pas pu mettre en évidence d’inhibition croisée, que ce soit dans un sens ou dans l’autre. D’autre part, un effet inhibiteur de CCR7 a également été identifié pour les hétéromères CCR7/CCR5 et CCR7/CXCR4. Nous avons pu montrer que l’expression de CCR7 exerce un effet négatif sur la réponse fonctionnelle de certains récepteurs hétérologues comme CCR5 et CXCR4 mais pas CCR2 ou ChemR23.<p><p>L’ensemble de ces données permet de mieux comprendre les interactions entre récepteurs et pourrait mener à l’identification de nouvelles cibles pour les programmes de recherche de molécules thérapeutiques, qui, jusqu’à présent, ciblaient presque exclusivement un seul et unique récepteur.<p><p>Etude du mécanisme d’activation du récepteur CCR5 et étude de la relation entre activité constitutive et dimérisation.<p><p>De nombreux travaux ont été menés ces dernières années afin de mieux comprendre les mécanismes moléculaires à la base de l’activation des récepteurs couplés aux protéines G (RCPG). Il apparaît que les RCPGs peuvent se trouver dans plusieurs états conformationnels, dont certains sont favorisés par la présence d’agonistes ou d’antagonistes, ou encore d’anticorps reconnaissant des épitopes conformationnels. Certaines mutations peuvent également induire la stabilisation de certaines conformations, actives ou inactives. Pour les RCPGs appartenant à la famille de la rhodopsine, il en a résulté un modèle selon lequel les récepteurs sont maintenus dans une conformation inactive par un ensemble d’interactions ioniques impliquant l’arginine (R3.50) d’un motif DRY conservé, présent à l’extrémité cytosolique du troisième segment transmembranaire. Les interactions responsables de ce qu’on appelle le « DRY-lock » feraient intervenir notamment l’aspartate (D3.49) adjacent de l’arginine et un aspartate ou glutamate (D/E6.30) localisé au sein de l’hélice 6. Selon ce modèle, la liaison d’un agoniste, ainsi que certaines mutations, favoriseraient la rupture de ces interactions ioniques, et une conformation permettant aux récepteurs de se coupler plus efficacement aux protéines G. Des résultats du laboratoire indiquent cependant que ce modèle ne serait pas transposable complètement au récepteur CCR5. <p><p>CCR5 possède intrinsèquement une activité constitutive en absence d'agoniste. Cette activité peut être mise en évidence par l'action d'un des antagonistes de CCR5, le TAK-779, qui s'est révélé posséder une activité de type agoniste inverse. D'autre part, CCR5 possède au sein de l'hélice 6 une arginine en position 6.30 et non pas un glutamate ou un aspartate. Une arginine à cette position ne peut donc contribuer au maintien d’une conformation inactive par interaction avec R3.50 .Dans le but de tester le modèle de « DRY-lock » sur CCR5 et de mieux comprendre les interactions moléculaires impliquées dans l’activation du récepteur, plusieurs récepteurs mutants ont été construits au laboratoire. Tout d’abord, l’arginine 3.50 du motif DRY a été mutée en Asn (R3.50N) afin de rompre les interactions ioniques de ce résidu. L’aspartate 3.49 a été muté en Asn (D3.49N) ou en Val (D3.49V), afin de neutraliser une des interactions du « DRY-lock » (Lagane, 2005). L’arginine 6.30 a été mutée d’une part en Asp (R6.30D) ou en Glu (R6.30E), afin de rétablir une possibilité d’interaction avec R3.50, d’autre part en Ala (R6.30A) et en Gln (R6.30Q) afin de mieux cerner le rôle de la charge de l’arginine. Afin de tester l’hypothèse d’interaction entre le résidu 6.30 et le résidu 2.40, l’aspartate 2 .40 a été mutée en Ala (D2.40A) ou en Arg (D2.40R) et des récepteurs présentant les deux mutations ont également construits (D2.40A/R6.30A et D2.40R/R6.30D). L’ensemble des résultats obtenus par l’analyse de ces mutants a permis de montrer que la nature des interactions entre l’extrémité cytosolique des hélices 3 et 6 influence l’activité du récepteur CCR5 (Springael, 2007). Une interaction forte conduit à une forme de récepteur inactif alors qu’une interaction faible s’accompagne d’une augmentation d’activité constitutive. Cette propriété de CCR5 serait donc partagée avec d’autres récepteurs appartenant à la famille de la rhodopsine. Cependant les interactions inter-hélice stabilisant ces conformations seraient différentes pour CCR5. D’autre part, l’étude de la position 2.40 laisse supposer l'importance du résidu aspartate 2.40 dans le maintien d'une conformation permettant l'activité constitutive du récepteur. Nous avons également testé s’il existait une corrélation entre activité constitutive et capacité du récepteur CCR5 à former des dimères, mais les résultats ne nous ont pas permis de mettre en évidence une quelconque relation entre activité et dimérisation.<p><p> <p> === Doctorat en Sciences biomédicales et pharmaceutiques === info:eu-repo/semantics/nonPublished
|